Cosmic-Ray Composition analysis at IceCube using Graph Neural Networks

The IceCube Neutrino Observatory is a multi-component detector embedded deep within the South-Pole Ice. This proceeding will discuss an analysis from an integrated operation of IceCube and its surface array, IceTop, to estimate cosmic-ray composition. The work will describe a novel graph neural netw...

Full description

Bibliographic Details
Main Authors: Koundal, Paras, IceCube Collaboration
Format: Book
Language:English
Published: 2024
Subjects:
Online Access:https://publikationen.bibliothek.kit.edu/1000167361
https://publikationen.bibliothek.kit.edu/1000167361/152030166
https://doi.org/10.5445/IR/1000167361
_version_ 1828677134809300992
author Koundal, Paras
IceCube Collaboration
author_facet Koundal, Paras
IceCube Collaboration
author_sort Koundal, Paras
collection KITopen (Karlsruhe Institute of Technologie)
description The IceCube Neutrino Observatory is a multi-component detector embedded deep within the South-Pole Ice. This proceeding will discuss an analysis from an integrated operation of IceCube and its surface array, IceTop, to estimate cosmic-ray composition. The work will describe a novel graph neural network based approach for estimating the mass of primary cosmic rays, that takes advantage of signal-footprint information and reconstructed cosmic-ray air shower parameters. In addition, the work will also introduce new composition-sensitive parameters for improving the estimation of cosmic-ray composition, with the potential of improving our understanding of the high-energy muon content in cosmic-ray air showers.
format Book
genre South pole
genre_facet South pole
geographic South Pole
geographic_facet South Pole
id ftubkarlsruhe:oai:EVASTAR-Karlsruhe.de:1000167361
institution Open Polar
language English
op_collection_id ftubkarlsruhe
op_doi https://doi.org/10.5445/IR/100016736110.48550/arXiv.2211.17198
op_relation info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2211.17198
https://publikationen.bibliothek.kit.edu/1000167361
https://publikationen.bibliothek.kit.edu/1000167361/152030166
https://doi.org/10.5445/IR/1000167361
op_rights https://creativecommons.org/licenses/by/4.0/deed.de
info:eu-repo/semantics/openAccess
publishDate 2024
record_format openpolar
spelling ftubkarlsruhe:oai:EVASTAR-Karlsruhe.de:1000167361 2025-04-06T15:06:38+00:00 Cosmic-Ray Composition analysis at IceCube using Graph Neural Networks Koundal, Paras IceCube Collaboration 2024-01-16 application/pdf https://publikationen.bibliothek.kit.edu/1000167361 https://publikationen.bibliothek.kit.edu/1000167361/152030166 https://doi.org/10.5445/IR/1000167361 eng eng info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2211.17198 https://publikationen.bibliothek.kit.edu/1000167361 https://publikationen.bibliothek.kit.edu/1000167361/152030166 https://doi.org/10.5445/IR/1000167361 https://creativecommons.org/licenses/by/4.0/deed.de info:eu-repo/semantics/openAccess ddc:530 Physics info:eu-repo/classification/ddc/530 doc-type:report Text info:eu-repo/semantics/book monograph info:eu-repo/semantics/publishedVersion 2024 ftubkarlsruhe https://doi.org/10.5445/IR/100016736110.48550/arXiv.2211.17198 2025-03-11T04:07:45Z The IceCube Neutrino Observatory is a multi-component detector embedded deep within the South-Pole Ice. This proceeding will discuss an analysis from an integrated operation of IceCube and its surface array, IceTop, to estimate cosmic-ray composition. The work will describe a novel graph neural network based approach for estimating the mass of primary cosmic rays, that takes advantage of signal-footprint information and reconstructed cosmic-ray air shower parameters. In addition, the work will also introduce new composition-sensitive parameters for improving the estimation of cosmic-ray composition, with the potential of improving our understanding of the high-energy muon content in cosmic-ray air showers. Book South pole KITopen (Karlsruhe Institute of Technologie) South Pole
spellingShingle ddc:530
Physics
info:eu-repo/classification/ddc/530
Koundal, Paras
IceCube Collaboration
Cosmic-Ray Composition analysis at IceCube using Graph Neural Networks
title Cosmic-Ray Composition analysis at IceCube using Graph Neural Networks
title_full Cosmic-Ray Composition analysis at IceCube using Graph Neural Networks
title_fullStr Cosmic-Ray Composition analysis at IceCube using Graph Neural Networks
title_full_unstemmed Cosmic-Ray Composition analysis at IceCube using Graph Neural Networks
title_short Cosmic-Ray Composition analysis at IceCube using Graph Neural Networks
title_sort cosmic-ray composition analysis at icecube using graph neural networks
topic ddc:530
Physics
info:eu-repo/classification/ddc/530
topic_facet ddc:530
Physics
info:eu-repo/classification/ddc/530
url https://publikationen.bibliothek.kit.edu/1000167361
https://publikationen.bibliothek.kit.edu/1000167361/152030166
https://doi.org/10.5445/IR/1000167361