Satellite gravity gradient grids for geophysics

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Author: Bouman J., Ebbing J., Fuchs M., Sebera J., Lieb V., Szwillus W., Haagmans R., Novak P.
Other Authors: Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Online Access:https://mediatum.ub.tum.de/1300217
https://mediatum.ub.tum.de/doc/1300217/document.pdf
https://doi.org/10.1038/srep21050
id fttumuenchen:oai:mediatum.ub.tum.de:node/1300217
record_format openpolar
spelling fttumuenchen:oai:mediatum.ub.tum.de:node/1300217 2023-05-15T17:38:28+02:00 Satellite gravity gradient grids for geophysics Bouman J., Ebbing J., Fuchs M., Sebera J., Lieb V., Szwillus W., Haagmans R., Novak P. Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) 2016-00-00 application/pdf https://mediatum.ub.tum.de/1300217 https://mediatum.ub.tum.de/doc/1300217/document.pdf https://doi.org/10.1038/srep21050 eng eng https://mediatum.ub.tum.de/1300217 https://mediatum.ub.tum.de/doc/1300217/document.pdf doi:10.1038/srep21050 info:eu-repo/semantics/openAccess info:eu-repo/classification/ddc/ article 2016 fttumuenchen https://doi.org/10.1038/srep21050 2023-03-16T23:52:16Z The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. Article in Journal/Newspaper North East Atlantic Munich University of Technology (TUM): mediaTUM Scientific Reports 6 1
institution Open Polar
collection Munich University of Technology (TUM): mediaTUM
op_collection_id fttumuenchen
language English
topic info:eu-repo/classification/ddc/
spellingShingle info:eu-repo/classification/ddc/
Bouman J., Ebbing J., Fuchs M., Sebera J., Lieb V., Szwillus W., Haagmans R., Novak P.
Satellite gravity gradient grids for geophysics
topic_facet info:eu-repo/classification/ddc/
description The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.
author2 Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)
format Article in Journal/Newspaper
author Bouman J., Ebbing J., Fuchs M., Sebera J., Lieb V., Szwillus W., Haagmans R., Novak P.
author_facet Bouman J., Ebbing J., Fuchs M., Sebera J., Lieb V., Szwillus W., Haagmans R., Novak P.
author_sort Bouman J., Ebbing J., Fuchs M., Sebera J., Lieb V., Szwillus W., Haagmans R., Novak P.
title Satellite gravity gradient grids for geophysics
title_short Satellite gravity gradient grids for geophysics
title_full Satellite gravity gradient grids for geophysics
title_fullStr Satellite gravity gradient grids for geophysics
title_full_unstemmed Satellite gravity gradient grids for geophysics
title_sort satellite gravity gradient grids for geophysics
publishDate 2016
url https://mediatum.ub.tum.de/1300217
https://mediatum.ub.tum.de/doc/1300217/document.pdf
https://doi.org/10.1038/srep21050
genre North East Atlantic
genre_facet North East Atlantic
op_relation https://mediatum.ub.tum.de/1300217
https://mediatum.ub.tum.de/doc/1300217/document.pdf
doi:10.1038/srep21050
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1038/srep21050
container_title Scientific Reports
container_volume 6
container_issue 1
_version_ 1766138926214414336