A comparison of finite element computations and an analytical approach for determining hull-induced underwater-radiated noise

Underwater-radiated noise (URN) of shipping significantly affects marine wildlife and can be a substantial but unwanted signature. Structure- and air-borne noise induced by motions of the main engine lead to a vibrating ship hull that radiates underwater sound. However, until today it is not yet ful...

Full description

Bibliographic Details
Main Authors: Andresen-Paulsen, Gyde, von Bock und Polach, Rüdiger Ulrich Franz, Donderer, Matthias
Format: Conference Object
Language:English
Published: 2022
Subjects:
Online Access:http://hdl.handle.net/11420/13969
id fttuhamburg:oai:tore.tuhh.de:11420/13969
record_format openpolar
spelling fttuhamburg:oai:tore.tuhh.de:11420/13969 2024-09-15T17:49:44+00:00 A comparison of finite element computations and an analytical approach for determining hull-induced underwater-radiated noise Andresen-Paulsen, Gyde von Bock und Polach, Rüdiger Ulrich Franz Donderer, Matthias 2022-06 http://hdl.handle.net/11420/13969 en eng Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE 41st International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2022 9780791885895 41st International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2022) http://hdl.handle.net/11420/13969 2-s2.0-85140777201 Finite Element Analysis Fluid-structure interaction Structural optimization Underwater sound Conference Paper Other 2022 fttuhamburg 2024-07-03T03:04:34Z Underwater-radiated noise (URN) of shipping significantly affects marine wildlife and can be a substantial but unwanted signature. Structure- and air-borne noise induced by motions of the main engine lead to a vibrating ship hull that radiates underwater sound. However, until today it is not yet fully understood which structural parameters influence the hull-induced underwater noise radiation, and to what extent. Acoustic tests suffer from long lead times and require high effort, i.e., cost-intensive measuring systems and high personnel costs for setting up and conducting measurements, filtering out background noises, etc. Additionally, they are not well-suited for systematic studies, e.g., for varying geometry parameters. Numerical simulations can serve as a cost-efficient and versatile alternative but their validation is impeded by a lack of available and suitable experimental data. Here, a first step is presented towards validated numerical simulations for investigating the impact of each structural parameter as well as their coupling to URN. Finite element simulations are conducted comparing results with an analytical solution for underwater sound radiation of an infinite plate. The simulations show a good agreement with the analytical solution. Nonetheless, the degree of agreement between the two approaches depends significantly on the boundary conditions as well as on the setup of the numerical model. The analytical solution is valid for an infinite plate and an unconfined fluid domain, by setting boundary conditions in a numerical model these assumptions can be included. Based on the validated numerical model of an infinite plate, a bottom-up approach can be applied, for further investigations of various parameters of more complex structures regarding their influence on URN. Conference Object Arctic TORE TUHH Open Research (Hamburg University of Technology)
institution Open Polar
collection TORE TUHH Open Research (Hamburg University of Technology)
op_collection_id fttuhamburg
language English
topic Finite Element Analysis
Fluid-structure interaction
Structural optimization
Underwater sound
spellingShingle Finite Element Analysis
Fluid-structure interaction
Structural optimization
Underwater sound
Andresen-Paulsen, Gyde
von Bock und Polach, Rüdiger Ulrich Franz
Donderer, Matthias
A comparison of finite element computations and an analytical approach for determining hull-induced underwater-radiated noise
topic_facet Finite Element Analysis
Fluid-structure interaction
Structural optimization
Underwater sound
description Underwater-radiated noise (URN) of shipping significantly affects marine wildlife and can be a substantial but unwanted signature. Structure- and air-borne noise induced by motions of the main engine lead to a vibrating ship hull that radiates underwater sound. However, until today it is not yet fully understood which structural parameters influence the hull-induced underwater noise radiation, and to what extent. Acoustic tests suffer from long lead times and require high effort, i.e., cost-intensive measuring systems and high personnel costs for setting up and conducting measurements, filtering out background noises, etc. Additionally, they are not well-suited for systematic studies, e.g., for varying geometry parameters. Numerical simulations can serve as a cost-efficient and versatile alternative but their validation is impeded by a lack of available and suitable experimental data. Here, a first step is presented towards validated numerical simulations for investigating the impact of each structural parameter as well as their coupling to URN. Finite element simulations are conducted comparing results with an analytical solution for underwater sound radiation of an infinite plate. The simulations show a good agreement with the analytical solution. Nonetheless, the degree of agreement between the two approaches depends significantly on the boundary conditions as well as on the setup of the numerical model. The analytical solution is valid for an infinite plate and an unconfined fluid domain, by setting boundary conditions in a numerical model these assumptions can be included. Based on the validated numerical model of an infinite plate, a bottom-up approach can be applied, for further investigations of various parameters of more complex structures regarding their influence on URN.
format Conference Object
author Andresen-Paulsen, Gyde
von Bock und Polach, Rüdiger Ulrich Franz
Donderer, Matthias
author_facet Andresen-Paulsen, Gyde
von Bock und Polach, Rüdiger Ulrich Franz
Donderer, Matthias
author_sort Andresen-Paulsen, Gyde
title A comparison of finite element computations and an analytical approach for determining hull-induced underwater-radiated noise
title_short A comparison of finite element computations and an analytical approach for determining hull-induced underwater-radiated noise
title_full A comparison of finite element computations and an analytical approach for determining hull-induced underwater-radiated noise
title_fullStr A comparison of finite element computations and an analytical approach for determining hull-induced underwater-radiated noise
title_full_unstemmed A comparison of finite element computations and an analytical approach for determining hull-induced underwater-radiated noise
title_sort comparison of finite element computations and an analytical approach for determining hull-induced underwater-radiated noise
publishDate 2022
url http://hdl.handle.net/11420/13969
genre Arctic
genre_facet Arctic
op_relation Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
41st International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2022
9780791885895
41st International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2022)
http://hdl.handle.net/11420/13969
2-s2.0-85140777201
_version_ 1810291467025907712