Determination of the vertical location of the axis of rotation of the roll motion from full-scale measurements

The behavior of a floating structure results from the mechanics of its, more or less, rigid body and the hydrostatic and hydrodynamic forces acting on it. Particularly for ships, as long and slender bodies, the axis of roll and its vertical position is of special importance. It is around this axis t...

Full description

Bibliographic Details
Published in:Volume 6: Ocean Engineering
Main Authors: Johnsen, Lars, Krüger, Stefan
Format: Conference Object
Language:English
Published: 2021
Subjects:
Online Access:http://hdl.handle.net/11420/10631
Description
Summary:The behavior of a floating structure results from the mechanics of its, more or less, rigid body and the hydrostatic and hydrodynamic forces acting on it. Particularly for ships, as long and slender bodies, the axis of roll and its vertical position is of special importance. It is around this axis that the lowest lateral accelerations in roll motion occur, which is not only weakly damped but also easily stimulated due to the relatively low mass moment of inertia around the ship's longitudinal axis. With the intention of clarifying some widespread misconceptions about the location of this axis and to investigate its relation to the natural roll period, full scale measurements have been carried out using a set of two mobile Inertial-Measurement-Units. The Inertial-Measurement-Units were placed on different heights, one above and one below the assumed location of the axis of rotation. Based on the measured accelerations and angular velocities, the average vertical location of the axis of the roll motion for small angles is determined.