Development and Characterization of Instrumentation for Future Extraterrestrial Soil Analyses: Investigation of Terrestrial Soil and Extraterrestrial Soil Analogues by Electrochemical Sensors and Ion Chromatography.

Abstract: The research presented herein discusses the analysis of Martian soil from the Phoenix mission and the development of a new instrument to further our understanding of remote terrestrial and extraterrestrial environments. The focus of the Phoenix analysis work was placed on the quantificatio...

Full description

Bibliographic Details
Main Author: McElhoney, Kyle.
Format: Text
Language:unknown
Subjects:
Online Access:https://dl.tufts.edu/catalog/tufts:21957
id fttuftsuniv:oai:tufts:21957
record_format openpolar
spelling fttuftsuniv:oai:tufts:21957 2023-05-15T13:39:23+02:00 Development and Characterization of Instrumentation for Future Extraterrestrial Soil Analyses: Investigation of Terrestrial Soil and Extraterrestrial Soil Analogues by Electrochemical Sensors and Ion Chromatography. McElhoney, Kyle. application/pdf https://dl.tufts.edu/catalog/tufts:21957 unknown Tufts University. Graduate School of Arts and Sciences. Theses and Dissertations. Tufts University electronic theses and dissertations. Tufts University. Department of Chemistry. Text fttuftsuniv 2018-12-05T13:38:39Z Abstract: The research presented herein discusses the analysis of Martian soil from the Phoenix mission and the development of a new instrument to further our understanding of remote terrestrial and extraterrestrial environments. The focus of the Phoenix analysis work was placed on the quantification of the soluble sulfate in the Phoenix samples and the determination of perchlorate parent salts using modelling software, soil simulants, ion-selective electrodes and ion chromatography. The implications of these analyses, especially the presence of CaClO4, indicate an arid Martian environment at the Phoenix landing site. Building on the successful Phoenix mission, as well as other un-flown instruments including the Robotic Chemical Analysis Laboratory, a new instrument was conceived, designed, and fabricated. The new instrument, the In-situ Chemical Analysis Laboratory and Sensor Array, increased the sampling capabilities compared with Phoenix by decreasing the size of the sample analysis unit while incorporating an increased number of sensors per unit. The scalable instrument can accommodate 4-100 units upon mass fabrication. Each sample analysis unit can house a maximum of 42 ion-selective electrodes, 3 reference electrodes, whilst reserving one wall for other electrochemical sensors. The increased sensor redundancy will allow for a more accurate and precise measurement of the soluble species present in the sample. The increased number of sensors was achieved by miniaturizing and optimizing the sensor design and materials. The final design, which utilized silver epoxy and porous carbon with an ion-selective membrane, yielded miniaturized sensors with similar sensitivity and stability while also increasing the overall lifetime. An investigation into soil leaching parameters was also performed to investigate the effects of miniaturizing the sample analysis unit from accommodating 25 mL to less than 10 mL leaching solution. Ion chromatography showed that the greatest increase on the soluble species present in the leachate occurred as the leach ratio (g leach solution:g soil) and leach time increased for Antarctic soil samples. The low levels of calcium and magnesium resulted in the opposite trend, where the concentration was decreased as the leach ratio and time increased, due to the presence of carbonates in the leaching solution and soil sample. Thesis (Ph.D.)--Tufts University, 2013. Submitted to the Dept. of Chemistry. Advisor: Samuel Kounaves. Committee: Arthur Utz, Charles Sykes, and Joseph Bauer. Keywords: Analytical chemistry, and Geochemistry. Text Antarc* Antarctic Tufts Digital Library (TDL) Antarctic
institution Open Polar
collection Tufts Digital Library (TDL)
op_collection_id fttuftsuniv
language unknown
topic Tufts University. Department of Chemistry.
spellingShingle Tufts University. Department of Chemistry.
McElhoney, Kyle.
Development and Characterization of Instrumentation for Future Extraterrestrial Soil Analyses: Investigation of Terrestrial Soil and Extraterrestrial Soil Analogues by Electrochemical Sensors and Ion Chromatography.
topic_facet Tufts University. Department of Chemistry.
description Abstract: The research presented herein discusses the analysis of Martian soil from the Phoenix mission and the development of a new instrument to further our understanding of remote terrestrial and extraterrestrial environments. The focus of the Phoenix analysis work was placed on the quantification of the soluble sulfate in the Phoenix samples and the determination of perchlorate parent salts using modelling software, soil simulants, ion-selective electrodes and ion chromatography. The implications of these analyses, especially the presence of CaClO4, indicate an arid Martian environment at the Phoenix landing site. Building on the successful Phoenix mission, as well as other un-flown instruments including the Robotic Chemical Analysis Laboratory, a new instrument was conceived, designed, and fabricated. The new instrument, the In-situ Chemical Analysis Laboratory and Sensor Array, increased the sampling capabilities compared with Phoenix by decreasing the size of the sample analysis unit while incorporating an increased number of sensors per unit. The scalable instrument can accommodate 4-100 units upon mass fabrication. Each sample analysis unit can house a maximum of 42 ion-selective electrodes, 3 reference electrodes, whilst reserving one wall for other electrochemical sensors. The increased sensor redundancy will allow for a more accurate and precise measurement of the soluble species present in the sample. The increased number of sensors was achieved by miniaturizing and optimizing the sensor design and materials. The final design, which utilized silver epoxy and porous carbon with an ion-selective membrane, yielded miniaturized sensors with similar sensitivity and stability while also increasing the overall lifetime. An investigation into soil leaching parameters was also performed to investigate the effects of miniaturizing the sample analysis unit from accommodating 25 mL to less than 10 mL leaching solution. Ion chromatography showed that the greatest increase on the soluble species present in the leachate occurred as the leach ratio (g leach solution:g soil) and leach time increased for Antarctic soil samples. The low levels of calcium and magnesium resulted in the opposite trend, where the concentration was decreased as the leach ratio and time increased, due to the presence of carbonates in the leaching solution and soil sample. Thesis (Ph.D.)--Tufts University, 2013. Submitted to the Dept. of Chemistry. Advisor: Samuel Kounaves. Committee: Arthur Utz, Charles Sykes, and Joseph Bauer. Keywords: Analytical chemistry, and Geochemistry.
format Text
author McElhoney, Kyle.
author_facet McElhoney, Kyle.
author_sort McElhoney, Kyle.
title Development and Characterization of Instrumentation for Future Extraterrestrial Soil Analyses: Investigation of Terrestrial Soil and Extraterrestrial Soil Analogues by Electrochemical Sensors and Ion Chromatography.
title_short Development and Characterization of Instrumentation for Future Extraterrestrial Soil Analyses: Investigation of Terrestrial Soil and Extraterrestrial Soil Analogues by Electrochemical Sensors and Ion Chromatography.
title_full Development and Characterization of Instrumentation for Future Extraterrestrial Soil Analyses: Investigation of Terrestrial Soil and Extraterrestrial Soil Analogues by Electrochemical Sensors and Ion Chromatography.
title_fullStr Development and Characterization of Instrumentation for Future Extraterrestrial Soil Analyses: Investigation of Terrestrial Soil and Extraterrestrial Soil Analogues by Electrochemical Sensors and Ion Chromatography.
title_full_unstemmed Development and Characterization of Instrumentation for Future Extraterrestrial Soil Analyses: Investigation of Terrestrial Soil and Extraterrestrial Soil Analogues by Electrochemical Sensors and Ion Chromatography.
title_sort development and characterization of instrumentation for future extraterrestrial soil analyses: investigation of terrestrial soil and extraterrestrial soil analogues by electrochemical sensors and ion chromatography.
url https://dl.tufts.edu/catalog/tufts:21957
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_relation Tufts University. Graduate School of Arts and Sciences. Theses and Dissertations.
Tufts University electronic theses and dissertations.
_version_ 1766117916747497472