Benefits of a Decentralized, Wind-Optimal Routing Structure in the North Atlantic Airspace

In an effort to increase the operational efficiency in the North Atlantic region, the benefits of a decentralized, wind-optimal routing structure are researched. Such a routing structure allows for direct routing by optimizing trajectories on the individual level. Implementing a tactical conflict de...

Full description

Bibliographic Details
Main Author: Nyessen, Nino (author)
Other Authors: Hoekstra, J.M. (graduation committee), Ellerbroek, J. (mentor), Delft University of Technology (degree granting institution)
Format: Master Thesis
Language:English
Published: 2022
Subjects:
Online Access:http://resolver.tudelft.nl/uuid:d0fd6a65-79b6-44ed-a61c-b2e687c5ba8d
id fttudelft:oai:tudelft.nl:uuid:d0fd6a65-79b6-44ed-a61c-b2e687c5ba8d
record_format openpolar
spelling fttudelft:oai:tudelft.nl:uuid:d0fd6a65-79b6-44ed-a61c-b2e687c5ba8d 2023-07-30T04:05:16+02:00 Benefits of a Decentralized, Wind-Optimal Routing Structure in the North Atlantic Airspace Nyessen, Nino (author) Hoekstra, J.M. (graduation committee) Ellerbroek, J. (mentor) Delft University of Technology (degree granting institution) 2022-03-24 http://resolver.tudelft.nl/uuid:d0fd6a65-79b6-44ed-a61c-b2e687c5ba8d en eng http://resolver.tudelft.nl/uuid:d0fd6a65-79b6-44ed-a61c-b2e687c5ba8d © 2022 Nino Nyessen Air Traffic Control Airspace Structure Decentralized Airspace Direct Routing Free Flight Modified Voltage Potential North Atlantic Airspace Wind-Optimal Routing master thesis 2022 fttudelft 2023-07-08T20:43:52Z In an effort to increase the operational efficiency in the North Atlantic region, the benefits of a decentralized, wind-optimal routing structure are researched. Such a routing structure allows for direct routing by optimizing trajectories on the individual level. Implementing a tactical conflict detection and resolution method eliminates the capacity limits imposed by air traffic control by shifting control to the flight deck. The benefits in terms of safety, capacity, and efficiency are assessed by comparing this routing structure to the current routing structure by simulating a year of real flight data. Furthermore, it is researched if such a routing structure remains viable for forecasted traffic levels by creating a future direct routing scenario with the use of dummy flights. Trajectory optimization is performed for the part of the trajectory above 10,000 ft in a decoupled manner with the ordered upwind algorithm for the horizontal domain and the base of aircraft data performance model for the vertical domain. Conflicts are solved on the tactical level with the modified voltage potential method in the horizontal domain. On average, a 5.1% fuel reduction, or 1.9% time reduction, is established for the new routing structure. A total of 18 loss of separations with an intrusion severity above 1% occur, of which the most severe intrusion still assures 734 ft vertical and/or 3.67 NM horizontal separation. The routing structure appears to be robust for future traffic levels as the airspace density scales linearly with the amount of aircraft and the conflict to loss of separation ratio remains constant with only three loss of separations slightly exceeding the 1% limit. Aerospace Engineering Master Thesis North Atlantic Delft University of Technology: Institutional Repository
institution Open Polar
collection Delft University of Technology: Institutional Repository
op_collection_id fttudelft
language English
topic Air Traffic Control
Airspace Structure
Decentralized Airspace
Direct Routing
Free Flight
Modified Voltage Potential
North Atlantic Airspace
Wind-Optimal Routing
spellingShingle Air Traffic Control
Airspace Structure
Decentralized Airspace
Direct Routing
Free Flight
Modified Voltage Potential
North Atlantic Airspace
Wind-Optimal Routing
Nyessen, Nino (author)
Benefits of a Decentralized, Wind-Optimal Routing Structure in the North Atlantic Airspace
topic_facet Air Traffic Control
Airspace Structure
Decentralized Airspace
Direct Routing
Free Flight
Modified Voltage Potential
North Atlantic Airspace
Wind-Optimal Routing
description In an effort to increase the operational efficiency in the North Atlantic region, the benefits of a decentralized, wind-optimal routing structure are researched. Such a routing structure allows for direct routing by optimizing trajectories on the individual level. Implementing a tactical conflict detection and resolution method eliminates the capacity limits imposed by air traffic control by shifting control to the flight deck. The benefits in terms of safety, capacity, and efficiency are assessed by comparing this routing structure to the current routing structure by simulating a year of real flight data. Furthermore, it is researched if such a routing structure remains viable for forecasted traffic levels by creating a future direct routing scenario with the use of dummy flights. Trajectory optimization is performed for the part of the trajectory above 10,000 ft in a decoupled manner with the ordered upwind algorithm for the horizontal domain and the base of aircraft data performance model for the vertical domain. Conflicts are solved on the tactical level with the modified voltage potential method in the horizontal domain. On average, a 5.1% fuel reduction, or 1.9% time reduction, is established for the new routing structure. A total of 18 loss of separations with an intrusion severity above 1% occur, of which the most severe intrusion still assures 734 ft vertical and/or 3.67 NM horizontal separation. The routing structure appears to be robust for future traffic levels as the airspace density scales linearly with the amount of aircraft and the conflict to loss of separation ratio remains constant with only three loss of separations slightly exceeding the 1% limit. Aerospace Engineering
author2 Hoekstra, J.M. (graduation committee)
Ellerbroek, J. (mentor)
Delft University of Technology (degree granting institution)
format Master Thesis
author Nyessen, Nino (author)
author_facet Nyessen, Nino (author)
author_sort Nyessen, Nino (author)
title Benefits of a Decentralized, Wind-Optimal Routing Structure in the North Atlantic Airspace
title_short Benefits of a Decentralized, Wind-Optimal Routing Structure in the North Atlantic Airspace
title_full Benefits of a Decentralized, Wind-Optimal Routing Structure in the North Atlantic Airspace
title_fullStr Benefits of a Decentralized, Wind-Optimal Routing Structure in the North Atlantic Airspace
title_full_unstemmed Benefits of a Decentralized, Wind-Optimal Routing Structure in the North Atlantic Airspace
title_sort benefits of a decentralized, wind-optimal routing structure in the north atlantic airspace
publishDate 2022
url http://resolver.tudelft.nl/uuid:d0fd6a65-79b6-44ed-a61c-b2e687c5ba8d
genre North Atlantic
genre_facet North Atlantic
op_relation http://resolver.tudelft.nl/uuid:d0fd6a65-79b6-44ed-a61c-b2e687c5ba8d
op_rights © 2022 Nino Nyessen
_version_ 1772817073929453568