Albatross movement suggests sensitivity to infrasound cues at sea
The ways in which seabirds navigate over very large spatial scales remain poorly understood. While olfactory and visual information can provide guidance over short distances, their range is often limited to 100s km, far below the navigational capacity of wide-ranging animals such as albatrosses. Inf...
Published in: | Proceedings of the National Academy of Sciences |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | http://resolver.tudelft.nl/uuid:c4693cf2-a940-4543-9c8b-6a3544adecc1 https://doi.org/10.1073/pnas.2218679120 |
id |
fttudelft:oai:tudelft.nl:uuid:c4693cf2-a940-4543-9c8b-6a3544adecc1 |
---|---|
record_format |
openpolar |
spelling |
fttudelft:oai:tudelft.nl:uuid:c4693cf2-a940-4543-9c8b-6a3544adecc1 2024-05-12T08:02:53+00:00 Albatross movement suggests sensitivity to infrasound cues at sea Gillies, Natasha (author) Martín López, Lucía Martina (author) den Ouden, O.F.C. (author) Assink, Jelle D. (author) Basille, Mathieu (author) Clay, Thomas A. (author) Clusella-Trullas, Susana (author) Joo, Rocío (author) Weimerskirch, Henri (author) 2023 http://resolver.tudelft.nl/uuid:c4693cf2-a940-4543-9c8b-6a3544adecc1 https://doi.org/10.1073/pnas.2218679120 en eng http://www.scopus.com/inward/record.url?scp=85173329559&partnerID=8YFLogxK Proceedings of the National Academy of Sciences of the United States of America--1091-6490--80884f05-044d-4522-b2a4-c9df9e8746bd http://resolver.tudelft.nl/uuid:c4693cf2-a940-4543-9c8b-6a3544adecc1 https://doi.org/10.1073/pnas.2218679120 © 2023 Natasha Gillies, Lucía Martina Martín López, O.F.C. den Ouden, Jelle D. Assink, Mathieu Basille, Thomas A. Clay, Susana Clusella-Trullas, Rocío Joo, Henri Weimerskirch, More Authors animal movement Animal navigation avian hearing movement ecology seabirds journal article 2023 fttudelft https://doi.org/10.1073/pnas.2218679120 2024-04-17T14:05:19Z The ways in which seabirds navigate over very large spatial scales remain poorly understood. While olfactory and visual information can provide guidance over short distances, their range is often limited to 100s km, far below the navigational capacity of wide-ranging animals such as albatrosses. Infrasound is a form of low-frequency sound that propagates for 1,000s km in the atmosphere. In marine habitats, its association with storms and ocean surface waves could in effect make it a useful cue for anticipating environmental conditions that favor or hinder flight or be associated with profitable foraging patches. However, behavioral responses of wild birds to infrasound remain untested. Here, we explored whether wandering albatrosses, Diomedea exulans, respond to microbarom infrasound at sea. We used Global Positioning System tracks of 89 free-ranging albatrosses in combination with acoustic modeling to investigate whether albatrosses preferentially orientate toward areas of 'loud' microbarom infrasound on their foraging trips. We found that in addition to responding to winds encountered in situ, albatrosses moved toward source regions associated with higher sound pressure levels. These findings suggest that albatrosses may be responding to long-range infrasonic cues. As albatrosses depend on winds and waves for soaring flight, infrasonic cues may help albatrosses to identify environmental conditions that allow them to energetically optimize flight over long distances. Our results shed light on one of the great unresolved mysteries in nature, navigation in seemingly featureless ocean environments. Applied Geophysics and Petrophysics Article in Journal/Newspaper Diomedea exulans Delft University of Technology: Institutional Repository Proceedings of the National Academy of Sciences 120 42 |
institution |
Open Polar |
collection |
Delft University of Technology: Institutional Repository |
op_collection_id |
fttudelft |
language |
English |
topic |
animal movement Animal navigation avian hearing movement ecology seabirds |
spellingShingle |
animal movement Animal navigation avian hearing movement ecology seabirds Gillies, Natasha (author) Martín López, Lucía Martina (author) den Ouden, O.F.C. (author) Assink, Jelle D. (author) Basille, Mathieu (author) Clay, Thomas A. (author) Clusella-Trullas, Susana (author) Joo, Rocío (author) Weimerskirch, Henri (author) Albatross movement suggests sensitivity to infrasound cues at sea |
topic_facet |
animal movement Animal navigation avian hearing movement ecology seabirds |
description |
The ways in which seabirds navigate over very large spatial scales remain poorly understood. While olfactory and visual information can provide guidance over short distances, their range is often limited to 100s km, far below the navigational capacity of wide-ranging animals such as albatrosses. Infrasound is a form of low-frequency sound that propagates for 1,000s km in the atmosphere. In marine habitats, its association with storms and ocean surface waves could in effect make it a useful cue for anticipating environmental conditions that favor or hinder flight or be associated with profitable foraging patches. However, behavioral responses of wild birds to infrasound remain untested. Here, we explored whether wandering albatrosses, Diomedea exulans, respond to microbarom infrasound at sea. We used Global Positioning System tracks of 89 free-ranging albatrosses in combination with acoustic modeling to investigate whether albatrosses preferentially orientate toward areas of 'loud' microbarom infrasound on their foraging trips. We found that in addition to responding to winds encountered in situ, albatrosses moved toward source regions associated with higher sound pressure levels. These findings suggest that albatrosses may be responding to long-range infrasonic cues. As albatrosses depend on winds and waves for soaring flight, infrasonic cues may help albatrosses to identify environmental conditions that allow them to energetically optimize flight over long distances. Our results shed light on one of the great unresolved mysteries in nature, navigation in seemingly featureless ocean environments. Applied Geophysics and Petrophysics |
format |
Article in Journal/Newspaper |
author |
Gillies, Natasha (author) Martín López, Lucía Martina (author) den Ouden, O.F.C. (author) Assink, Jelle D. (author) Basille, Mathieu (author) Clay, Thomas A. (author) Clusella-Trullas, Susana (author) Joo, Rocío (author) Weimerskirch, Henri (author) |
author_facet |
Gillies, Natasha (author) Martín López, Lucía Martina (author) den Ouden, O.F.C. (author) Assink, Jelle D. (author) Basille, Mathieu (author) Clay, Thomas A. (author) Clusella-Trullas, Susana (author) Joo, Rocío (author) Weimerskirch, Henri (author) |
author_sort |
Gillies, Natasha (author) |
title |
Albatross movement suggests sensitivity to infrasound cues at sea |
title_short |
Albatross movement suggests sensitivity to infrasound cues at sea |
title_full |
Albatross movement suggests sensitivity to infrasound cues at sea |
title_fullStr |
Albatross movement suggests sensitivity to infrasound cues at sea |
title_full_unstemmed |
Albatross movement suggests sensitivity to infrasound cues at sea |
title_sort |
albatross movement suggests sensitivity to infrasound cues at sea |
publishDate |
2023 |
url |
http://resolver.tudelft.nl/uuid:c4693cf2-a940-4543-9c8b-6a3544adecc1 https://doi.org/10.1073/pnas.2218679120 |
genre |
Diomedea exulans |
genre_facet |
Diomedea exulans |
op_relation |
http://www.scopus.com/inward/record.url?scp=85173329559&partnerID=8YFLogxK Proceedings of the National Academy of Sciences of the United States of America--1091-6490--80884f05-044d-4522-b2a4-c9df9e8746bd http://resolver.tudelft.nl/uuid:c4693cf2-a940-4543-9c8b-6a3544adecc1 https://doi.org/10.1073/pnas.2218679120 |
op_rights |
© 2023 Natasha Gillies, Lucía Martina Martín López, O.F.C. den Ouden, Jelle D. Assink, Mathieu Basille, Thomas A. Clay, Susana Clusella-Trullas, Rocío Joo, Henri Weimerskirch, More Authors |
op_doi |
https://doi.org/10.1073/pnas.2218679120 |
container_title |
Proceedings of the National Academy of Sciences |
container_volume |
120 |
container_issue |
42 |
_version_ |
1798845026491432960 |