Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau
Frozen ground has an important role in regional hydrological cycles and ecosystems, particularly on the Qinghai–Tibetan Plateau (QTP), which is characterized by high elevations and a dry climate. This study modified a distributed, physically based hydrological model and applied it to simulate long-t...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2018
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-12-657-2018 https://www.the-cryosphere.net/12/657/2018/tc-12-657-2018.pdf https://doaj.org/article/d25b0aecf89a4565a3a6ef1520268fcb |
_version_ | 1821854673133371392 |
---|---|
author | B. Gao D. Yang Y. Qin Y. Wang H. Li Y. Zhang T. Zhang |
author_facet | B. Gao D. Yang Y. Qin Y. Wang H. Li Y. Zhang T. Zhang |
author_sort | B. Gao |
collection | Unknown |
container_issue | 2 |
container_start_page | 657 |
container_title | The Cryosphere |
container_volume | 12 |
description | Frozen ground has an important role in regional hydrological cycles and ecosystems, particularly on the Qinghai–Tibetan Plateau (QTP), which is characterized by high elevations and a dry climate. This study modified a distributed, physically based hydrological model and applied it to simulate long-term (1971–2013) changes in frozen ground its the effects on hydrology in the upper Heihe basin, northeastern QTP. The model was validated against data obtained from multiple ground-based observations. Based on model simulations, we analyzed spatio-temporal changes in frozen soils and their effects on hydrology. Our results show that the area with permafrost shrank by 8.8 % (approximately 500 km2), predominantly in areas with elevations between 3500 and 3900 m. The maximum depth of seasonally frozen ground decreased at a rate of approximately 0.032 m decade−1, and the active layer thickness over the permafrost increased by approximately 0.043 m decade−1. Runoff increased significantly during the cold season (November–March) due to an increase in liquid soil moisture caused by rising soil temperatures. Areas in which permafrost changed into seasonally frozen ground at high elevations showed especially large increases in runoff. Annual runoff increased due to increased precipitation, the base flow increased due to changes in frozen soils, and the actual evapotranspiration increased significantly due to increased precipitation and soil warming. The groundwater storage showed an increasing trend, indicating that a reduction in permafrost extent enhanced the groundwater recharge. |
format | Article in Journal/Newspaper |
genre | Active layer thickness permafrost The Cryosphere |
genre_facet | Active layer thickness permafrost The Cryosphere |
id | fttriple:oai:gotriple.eu:oai:doaj.org/article:d25b0aecf89a4565a3a6ef1520268fcb |
institution | Open Polar |
language | English |
op_collection_id | fttriple |
op_container_end_page | 673 |
op_doi | https://doi.org/10.5194/tc-12-657-2018 |
op_relation | doi:10.5194/tc-12-657-2018 1994-0416 1994-0424 https://www.the-cryosphere.net/12/657/2018/tc-12-657-2018.pdf https://doaj.org/article/d25b0aecf89a4565a3a6ef1520268fcb |
op_rights | undefined |
op_source | The Cryosphere, Vol 12, Pp 657-673 (2018) |
publishDate | 2018 |
publisher | Copernicus Publications |
record_format | openpolar |
spelling | fttriple:oai:gotriple.eu:oai:doaj.org/article:d25b0aecf89a4565a3a6ef1520268fcb 2025-01-16T18:35:30+00:00 Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau B. Gao D. Yang Y. Qin Y. Wang H. Li Y. Zhang T. Zhang 2018-02-01 https://doi.org/10.5194/tc-12-657-2018 https://www.the-cryosphere.net/12/657/2018/tc-12-657-2018.pdf https://doaj.org/article/d25b0aecf89a4565a3a6ef1520268fcb en eng Copernicus Publications doi:10.5194/tc-12-657-2018 1994-0416 1994-0424 https://www.the-cryosphere.net/12/657/2018/tc-12-657-2018.pdf https://doaj.org/article/d25b0aecf89a4565a3a6ef1520268fcb undefined The Cryosphere, Vol 12, Pp 657-673 (2018) geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2018 fttriple https://doi.org/10.5194/tc-12-657-2018 2023-01-22T19:24:51Z Frozen ground has an important role in regional hydrological cycles and ecosystems, particularly on the Qinghai–Tibetan Plateau (QTP), which is characterized by high elevations and a dry climate. This study modified a distributed, physically based hydrological model and applied it to simulate long-term (1971–2013) changes in frozen ground its the effects on hydrology in the upper Heihe basin, northeastern QTP. The model was validated against data obtained from multiple ground-based observations. Based on model simulations, we analyzed spatio-temporal changes in frozen soils and their effects on hydrology. Our results show that the area with permafrost shrank by 8.8 % (approximately 500 km2), predominantly in areas with elevations between 3500 and 3900 m. The maximum depth of seasonally frozen ground decreased at a rate of approximately 0.032 m decade−1, and the active layer thickness over the permafrost increased by approximately 0.043 m decade−1. Runoff increased significantly during the cold season (November–March) due to an increase in liquid soil moisture caused by rising soil temperatures. Areas in which permafrost changed into seasonally frozen ground at high elevations showed especially large increases in runoff. Annual runoff increased due to increased precipitation, the base flow increased due to changes in frozen soils, and the actual evapotranspiration increased significantly due to increased precipitation and soil warming. The groundwater storage showed an increasing trend, indicating that a reduction in permafrost extent enhanced the groundwater recharge. Article in Journal/Newspaper Active layer thickness permafrost The Cryosphere Unknown The Cryosphere 12 2 657 673 |
spellingShingle | geo envir B. Gao D. Yang Y. Qin Y. Wang H. Li Y. Zhang T. Zhang Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau |
title | Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau |
title_full | Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau |
title_fullStr | Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau |
title_full_unstemmed | Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau |
title_short | Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau |
title_sort | change in frozen soils and its effect on regional hydrology, upper heihe basin, northeastern qinghai–tibetan plateau |
topic | geo envir |
topic_facet | geo envir |
url | https://doi.org/10.5194/tc-12-657-2018 https://www.the-cryosphere.net/12/657/2018/tc-12-657-2018.pdf https://doaj.org/article/d25b0aecf89a4565a3a6ef1520268fcb |