A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data

Sea-ice thickness on a global scale is derived from different satellite sensors using independent retrieval methods. Due to the sensor and orbit characteristics, such satellite retrievals differ in spatial and temporal resolution as well as in the sensitivity to certain sea-ice types and thickness r...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: R. Ricker, S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, C. Haas
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2017
Subjects:
Online Access:https://doi.org/10.5194/tc-11-1607-2017
https://www.the-cryosphere.net/11/1607/2017/tc-11-1607-2017.pdf
https://doaj.org/article/a85cd5c19c3941b7ad7169bf003f4fd3
_version_ 1821822536912994304
author R. Ricker
S. Hendricks
L. Kaleschke
X. Tian-Kunze
J. King
C. Haas
author_facet R. Ricker
S. Hendricks
L. Kaleschke
X. Tian-Kunze
J. King
C. Haas
author_sort R. Ricker
collection Unknown
container_issue 4
container_start_page 1607
container_title The Cryosphere
container_volume 11
description Sea-ice thickness on a global scale is derived from different satellite sensors using independent retrieval methods. Due to the sensor and orbit characteristics, such satellite retrievals differ in spatial and temporal resolution as well as in the sensitivity to certain sea-ice types and thickness ranges. Satellite altimeters, such as CryoSat-2 (CS2), sense the height of the ice surface above the sea level, which can be converted into sea-ice thickness. Relative uncertainties associated with this method are large over thin ice regimes. Another retrieval method is based on the evaluation of surface brightness temperature (TB) in L-band microwave frequencies (1.4 GHz) with a thickness-dependent emission model, as measured by the Soil Moisture and Ocean Salinity (SMOS) satellite. While the radiometer-based method looses sensitivity for thick sea ice (> 1 m), relative uncertainties over thin ice are significantly smaller than for the altimetry-based retrievals. In addition, the SMOS product provides global sea-ice coverage on a daily basis unlike the altimeter data. This study presents the first merged product of complementary weekly Arctic sea-ice thickness data records from the CS2 altimeter and SMOS radiometer. We use two merging approaches: a weighted mean (WM) and an optimal interpolation (OI) scheme. While the weighted mean leaves gaps between CS2 orbits, OI is used to produce weekly Arctic-wide sea-ice thickness fields. The benefit of the data merging is shown by a comparison with airborne electromagnetic (AEM) induction sounding measurements. When compared to airborne thickness data in the Barents Sea, the merged product has a root mean square deviation (RMSD) of about 0.7 m less than the CS2 product and therefore demonstrates the capability to enhance the CS2 product in thin ice regimes. However, in mixed first-year (FYI) and multiyear (MYI) ice regimes as in the Beaufort Sea, the CS2 retrieval shows the lowest bias.
format Article in Journal/Newspaper
genre Arctic
Barents Sea
Beaufort Sea
Sea ice
The Cryosphere
genre_facet Arctic
Barents Sea
Beaufort Sea
Sea ice
The Cryosphere
geographic Arctic
Barents Sea
geographic_facet Arctic
Barents Sea
id fttriple:oai:gotriple.eu:oai:doaj.org/article:a85cd5c19c3941b7ad7169bf003f4fd3
institution Open Polar
language English
op_collection_id fttriple
op_container_end_page 1623
op_doi https://doi.org/10.5194/tc-11-1607-2017
op_relation doi:10.5194/tc-11-1607-2017
1994-0416
1994-0424
https://www.the-cryosphere.net/11/1607/2017/tc-11-1607-2017.pdf
https://doaj.org/article/a85cd5c19c3941b7ad7169bf003f4fd3
op_rights undefined
op_source The Cryosphere, Vol 11, Pp 1607-1623 (2017)
publishDate 2017
publisher Copernicus Publications
record_format openpolar
spelling fttriple:oai:gotriple.eu:oai:doaj.org/article:a85cd5c19c3941b7ad7169bf003f4fd3 2025-01-16T20:27:33+00:00 A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data R. Ricker S. Hendricks L. Kaleschke X. Tian-Kunze J. King C. Haas 2017-07-01 https://doi.org/10.5194/tc-11-1607-2017 https://www.the-cryosphere.net/11/1607/2017/tc-11-1607-2017.pdf https://doaj.org/article/a85cd5c19c3941b7ad7169bf003f4fd3 en eng Copernicus Publications doi:10.5194/tc-11-1607-2017 1994-0416 1994-0424 https://www.the-cryosphere.net/11/1607/2017/tc-11-1607-2017.pdf https://doaj.org/article/a85cd5c19c3941b7ad7169bf003f4fd3 undefined The Cryosphere, Vol 11, Pp 1607-1623 (2017) geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2017 fttriple https://doi.org/10.5194/tc-11-1607-2017 2023-01-22T19:23:40Z Sea-ice thickness on a global scale is derived from different satellite sensors using independent retrieval methods. Due to the sensor and orbit characteristics, such satellite retrievals differ in spatial and temporal resolution as well as in the sensitivity to certain sea-ice types and thickness ranges. Satellite altimeters, such as CryoSat-2 (CS2), sense the height of the ice surface above the sea level, which can be converted into sea-ice thickness. Relative uncertainties associated with this method are large over thin ice regimes. Another retrieval method is based on the evaluation of surface brightness temperature (TB) in L-band microwave frequencies (1.4 GHz) with a thickness-dependent emission model, as measured by the Soil Moisture and Ocean Salinity (SMOS) satellite. While the radiometer-based method looses sensitivity for thick sea ice (> 1 m), relative uncertainties over thin ice are significantly smaller than for the altimetry-based retrievals. In addition, the SMOS product provides global sea-ice coverage on a daily basis unlike the altimeter data. This study presents the first merged product of complementary weekly Arctic sea-ice thickness data records from the CS2 altimeter and SMOS radiometer. We use two merging approaches: a weighted mean (WM) and an optimal interpolation (OI) scheme. While the weighted mean leaves gaps between CS2 orbits, OI is used to produce weekly Arctic-wide sea-ice thickness fields. The benefit of the data merging is shown by a comparison with airborne electromagnetic (AEM) induction sounding measurements. When compared to airborne thickness data in the Barents Sea, the merged product has a root mean square deviation (RMSD) of about 0.7 m less than the CS2 product and therefore demonstrates the capability to enhance the CS2 product in thin ice regimes. However, in mixed first-year (FYI) and multiyear (MYI) ice regimes as in the Beaufort Sea, the CS2 retrieval shows the lowest bias. Article in Journal/Newspaper Arctic Barents Sea Beaufort Sea Sea ice The Cryosphere Unknown Arctic Barents Sea The Cryosphere 11 4 1607 1623
spellingShingle geo
envir
R. Ricker
S. Hendricks
L. Kaleschke
X. Tian-Kunze
J. King
C. Haas
A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data
title A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data
title_full A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data
title_fullStr A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data
title_full_unstemmed A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data
title_short A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data
title_sort weekly arctic sea-ice thickness data record from merged cryosat-2 and smos satellite data
topic geo
envir
topic_facet geo
envir
url https://doi.org/10.5194/tc-11-1607-2017
https://www.the-cryosphere.net/11/1607/2017/tc-11-1607-2017.pdf
https://doaj.org/article/a85cd5c19c3941b7ad7169bf003f4fd3