Rock glacier characteristics serve as an indirect record of multiple alpine glacier advances in Taylor Valley, Antarctica
The geomorphic record indicates that alpine glaciers in the McMurdo Dry Valleys of southern Victoria Land, Antarctica, appear to advance during interglacial periods in response to ice-free conditions in the Ross Sea. Few records of these advances are preserved and/or subaerially exposed, complicatin...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2020
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-14-1-2020 https://www.the-cryosphere.net/14/1/2020/tc-14-1-2020.pdf https://doaj.org/article/a644bd7b76e74070b173314bf67bc691 |
Summary: | The geomorphic record indicates that alpine glaciers in the McMurdo Dry Valleys of southern Victoria Land, Antarctica, appear to advance during interglacial periods in response to ice-free conditions in the Ross Sea. Few records of these advances are preserved and/or subaerially exposed, complicating the interpretations of regional glacier response to climate changes. Here, we present geophysical and geochemical analyses of a rock glacier that originates from icefalls fed by alpine Doran Glacier in central Taylor Valley. The rock glacier exhibits a trend of increased weathering of granitic clasts via ventifaction and grussification down-flow. Meltwater ponds on the rock glacier exhibit variable salinity that ranges from freshwater to higher than seawater, with the highest salinity pond near the rock glacier toe. Ground-penetrating radar analyses reveal the feature to possess a primarily clean ice interior, with layers of englacial debris. Stable isotopic data from three ice cores support a glacial origin for the ice within the rock glacier. These data suggest that the current morphology of the rock glacier is the result of multiple events of increased ice contribution caused by advances of Doran Glacier, which is the main source of ice to the rock glacier. We therefore demonstrate the potential of ice-cored rock glaciers to record multiple advances and retreats of Dry Valley glaciers, permitting the interpretation of glacial responses to Pleistocene and Holocene climate change even where direct records are not present. |
---|