Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014

Seasonal snow cover of the Northern Hemisphere (NH) is a major factor in the global climate system, which makes snow cover an important variable in climate models. Previously, substantial uncertainties have been reported in NH snow water equivalent (SWE) estimates. A recent bias-correction method si...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: K. Kouki, P. Räisänen, K. Luojus, A. Luomaranta, A. Riihelä
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
geo
Online Access:https://doi.org/10.5194/tc-16-1007-2022
https://tc.copernicus.org/articles/16/1007/2022/tc-16-1007-2022.pdf
https://doaj.org/article/a0b822a065c54c54a2ef112b8e303d8b
id fttriple:oai:gotriple.eu:oai:doaj.org/article:a0b822a065c54c54a2ef112b8e303d8b
record_format openpolar
spelling fttriple:oai:gotriple.eu:oai:doaj.org/article:a0b822a065c54c54a2ef112b8e303d8b 2023-05-15T18:32:19+02:00 Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014 K. Kouki P. Räisänen K. Luojus A. Luomaranta A. Riihelä 2022-03-01 https://doi.org/10.5194/tc-16-1007-2022 https://tc.copernicus.org/articles/16/1007/2022/tc-16-1007-2022.pdf https://doaj.org/article/a0b822a065c54c54a2ef112b8e303d8b en eng Copernicus Publications doi:10.5194/tc-16-1007-2022 1994-0416 1994-0424 https://tc.copernicus.org/articles/16/1007/2022/tc-16-1007-2022.pdf https://doaj.org/article/a0b822a065c54c54a2ef112b8e303d8b undefined The Cryosphere, Vol 16, Pp 1007-1030 (2022) geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2022 fttriple https://doi.org/10.5194/tc-16-1007-2022 2023-01-22T19:24:14Z Seasonal snow cover of the Northern Hemisphere (NH) is a major factor in the global climate system, which makes snow cover an important variable in climate models. Previously, substantial uncertainties have been reported in NH snow water equivalent (SWE) estimates. A recent bias-correction method significantly reduces the uncertainty of NH SWE estimation, which enables a more reliable analysis of the climate models' ability to describe the snow cover. We have intercompared NH SWE estimates between CMIP6 (Coupled Model Intercomparison Project Phase 6) models and observation-based SWE reference data north of 40∘ N for the period 1982–2014 and analyzed with a regression approach whether model biases in temperature (T) and precipitation (P) could explain the model biases in SWE. We analyzed separately SWE in winter and SWE change rate in spring. For SWE reference data, we used bias-corrected SnowCCI data for non-mountainous regions and the mean of Brown, MERRA-2 and Crocus v7 data for the mountainous regions. The SnowCCI SWE data are based on satellite passive microwave radiometer data and in situ snow depth data. The analysis shows that CMIP6 models tend to overestimate SWE; however, large variability exists between models. In winter, P is the dominant factor causing SWE discrepancies especially in the northern and coastal regions. T contributes to SWE biases mainly in regions, where T is close to 0∘ C in winter. In spring, the importance of T in explaining the snowmelt rate discrepancies increases. This is to be expected, because the increase in T is the main factor that causes snow to melt as spring progresses. Furthermore, it is obvious from the results that biases in T or P cannot explain all model biases either in SWE in winter or in the snowmelt rate in spring. Other factors, such as deficiencies in model parameterizations and possibly biases in the observational datasets, also contribute to SWE discrepancies. In particular, linear regression suggests that when the biases in T and P are eliminated, the models ... Article in Journal/Newspaper The Cryosphere Unknown Merra ENVELOPE(12.615,12.615,65.816,65.816) The Cryosphere 16 3 1007 1030
institution Open Polar
collection Unknown
op_collection_id fttriple
language English
topic geo
envir
spellingShingle geo
envir
K. Kouki
P. Räisänen
K. Luojus
A. Luomaranta
A. Riihelä
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014
topic_facet geo
envir
description Seasonal snow cover of the Northern Hemisphere (NH) is a major factor in the global climate system, which makes snow cover an important variable in climate models. Previously, substantial uncertainties have been reported in NH snow water equivalent (SWE) estimates. A recent bias-correction method significantly reduces the uncertainty of NH SWE estimation, which enables a more reliable analysis of the climate models' ability to describe the snow cover. We have intercompared NH SWE estimates between CMIP6 (Coupled Model Intercomparison Project Phase 6) models and observation-based SWE reference data north of 40∘ N for the period 1982–2014 and analyzed with a regression approach whether model biases in temperature (T) and precipitation (P) could explain the model biases in SWE. We analyzed separately SWE in winter and SWE change rate in spring. For SWE reference data, we used bias-corrected SnowCCI data for non-mountainous regions and the mean of Brown, MERRA-2 and Crocus v7 data for the mountainous regions. The SnowCCI SWE data are based on satellite passive microwave radiometer data and in situ snow depth data. The analysis shows that CMIP6 models tend to overestimate SWE; however, large variability exists between models. In winter, P is the dominant factor causing SWE discrepancies especially in the northern and coastal regions. T contributes to SWE biases mainly in regions, where T is close to 0∘ C in winter. In spring, the importance of T in explaining the snowmelt rate discrepancies increases. This is to be expected, because the increase in T is the main factor that causes snow to melt as spring progresses. Furthermore, it is obvious from the results that biases in T or P cannot explain all model biases either in SWE in winter or in the snowmelt rate in spring. Other factors, such as deficiencies in model parameterizations and possibly biases in the observational datasets, also contribute to SWE discrepancies. In particular, linear regression suggests that when the biases in T and P are eliminated, the models ...
format Article in Journal/Newspaper
author K. Kouki
P. Räisänen
K. Luojus
A. Luomaranta
A. Riihelä
author_facet K. Kouki
P. Räisänen
K. Luojus
A. Luomaranta
A. Riihelä
author_sort K. Kouki
title Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014
title_short Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014
title_full Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014
title_fullStr Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014
title_full_unstemmed Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014
title_sort evaluation of northern hemisphere snow water equivalent in cmip6 models during 1982–2014
publisher Copernicus Publications
publishDate 2022
url https://doi.org/10.5194/tc-16-1007-2022
https://tc.copernicus.org/articles/16/1007/2022/tc-16-1007-2022.pdf
https://doaj.org/article/a0b822a065c54c54a2ef112b8e303d8b
long_lat ENVELOPE(12.615,12.615,65.816,65.816)
geographic Merra
geographic_facet Merra
genre The Cryosphere
genre_facet The Cryosphere
op_source The Cryosphere, Vol 16, Pp 1007-1030 (2022)
op_relation doi:10.5194/tc-16-1007-2022
1994-0416
1994-0424
https://tc.copernicus.org/articles/16/1007/2022/tc-16-1007-2022.pdf
https://doaj.org/article/a0b822a065c54c54a2ef112b8e303d8b
op_rights undefined
op_doi https://doi.org/10.5194/tc-16-1007-2022
container_title The Cryosphere
container_volume 16
container_issue 3
container_start_page 1007
op_container_end_page 1030
_version_ 1766216412748054528