Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis
Results from ground-penetrating radar (GPR) measurements and shallow ice cores carried out during a scientific traverse between Dome Concordia (DC) and Vostok stations are presented in order to infer both spatial and temporal characteristics of snow accumulation over the East Antarctic Plateau. Spat...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2018
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-12-1831-2018 https://www.the-cryosphere.net/12/1831/2018/tc-12-1831-2018.pdf https://doaj.org/article/9adb51b264164f9db9c344c84a08661b |
id |
fttriple:oai:gotriple.eu:oai:doaj.org/article:9adb51b264164f9db9c344c84a08661b |
---|---|
record_format |
openpolar |
spelling |
fttriple:oai:gotriple.eu:oai:doaj.org/article:9adb51b264164f9db9c344c84a08661b 2023-05-15T13:43:15+02:00 Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis E. Le Meur O. Magand L. Arnaud M. Fily M. Frezzotti M. Cavitte R. Mulvaney S. Urbini 2018-05-01 https://doi.org/10.5194/tc-12-1831-2018 https://www.the-cryosphere.net/12/1831/2018/tc-12-1831-2018.pdf https://doaj.org/article/9adb51b264164f9db9c344c84a08661b en eng Copernicus Publications doi:10.5194/tc-12-1831-2018 1994-0416 1994-0424 https://www.the-cryosphere.net/12/1831/2018/tc-12-1831-2018.pdf https://doaj.org/article/9adb51b264164f9db9c344c84a08661b undefined The Cryosphere, Vol 12, Pp 1831-1850 (2018) geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2018 fttriple https://doi.org/10.5194/tc-12-1831-2018 2023-01-22T19:11:46Z Results from ground-penetrating radar (GPR) measurements and shallow ice cores carried out during a scientific traverse between Dome Concordia (DC) and Vostok stations are presented in order to infer both spatial and temporal characteristics of snow accumulation over the East Antarctic Plateau. Spatially continuous accumulation rates along the traverse are computed from the identification of three equally spaced radar reflections spanning about the last 600 years. Accurate dating of these internal reflection horizons (IRHs) is obtained from a depth–age relationship derived from volcanic horizons and bomb testing fallouts on a DC ice core and shows a very good consistency when tested against extra ice cores drilled along the radar profile. Accumulation rates are then inferred by accounting for density profiles down to each IRH. For the latter purpose, a careful error analysis showed that using a single and more accurate density profile along a DC core provided more reliable results than trying to include the potential spatial variability in density from extra (but less accurate) ice cores distributed along the profile. The most striking feature is an accumulation pattern that remains constant through time with persistent gradients such as a marked decrease from 26 mm w.e. yr−1 at DC to 20 mm w.e. yr−1 at the south-west end of the profile over the last 234 years on average (with a similar decrease from 25 to 19 mm w.e. yr−1 over the last 592 years). As for the time dependency, despite an overall consistency with similar measurements carried out along the main East Antarctic divides, interpreting possible trends remains difficult. Indeed, error bars in our measurements are still too large to unambiguously infer an apparent time increase in accumulation rate. For the proposed absolute values, maximum margins of error are in the range 4 mm w.e. yr−1 (last 234 years) to 2 mm w.e. yr−1 (last 592 years), a decrease with depth mainly resulting from the time-averaging when computing accumulation rates. Article in Journal/Newspaper Antarc* Antarctic Antarctica ice core The Cryosphere Unknown Antarctic The Cryosphere 12 5 1831 1850 |
institution |
Open Polar |
collection |
Unknown |
op_collection_id |
fttriple |
language |
English |
topic |
geo envir |
spellingShingle |
geo envir E. Le Meur O. Magand L. Arnaud M. Fily M. Frezzotti M. Cavitte R. Mulvaney S. Urbini Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis |
topic_facet |
geo envir |
description |
Results from ground-penetrating radar (GPR) measurements and shallow ice cores carried out during a scientific traverse between Dome Concordia (DC) and Vostok stations are presented in order to infer both spatial and temporal characteristics of snow accumulation over the East Antarctic Plateau. Spatially continuous accumulation rates along the traverse are computed from the identification of three equally spaced radar reflections spanning about the last 600 years. Accurate dating of these internal reflection horizons (IRHs) is obtained from a depth–age relationship derived from volcanic horizons and bomb testing fallouts on a DC ice core and shows a very good consistency when tested against extra ice cores drilled along the radar profile. Accumulation rates are then inferred by accounting for density profiles down to each IRH. For the latter purpose, a careful error analysis showed that using a single and more accurate density profile along a DC core provided more reliable results than trying to include the potential spatial variability in density from extra (but less accurate) ice cores distributed along the profile. The most striking feature is an accumulation pattern that remains constant through time with persistent gradients such as a marked decrease from 26 mm w.e. yr−1 at DC to 20 mm w.e. yr−1 at the south-west end of the profile over the last 234 years on average (with a similar decrease from 25 to 19 mm w.e. yr−1 over the last 592 years). As for the time dependency, despite an overall consistency with similar measurements carried out along the main East Antarctic divides, interpreting possible trends remains difficult. Indeed, error bars in our measurements are still too large to unambiguously infer an apparent time increase in accumulation rate. For the proposed absolute values, maximum margins of error are in the range 4 mm w.e. yr−1 (last 234 years) to 2 mm w.e. yr−1 (last 592 years), a decrease with depth mainly resulting from the time-averaging when computing accumulation rates. |
format |
Article in Journal/Newspaper |
author |
E. Le Meur O. Magand L. Arnaud M. Fily M. Frezzotti M. Cavitte R. Mulvaney S. Urbini |
author_facet |
E. Le Meur O. Magand L. Arnaud M. Fily M. Frezzotti M. Cavitte R. Mulvaney S. Urbini |
author_sort |
E. Le Meur |
title |
Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis |
title_short |
Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis |
title_full |
Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis |
title_fullStr |
Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis |
title_full_unstemmed |
Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis |
title_sort |
spatial and temporal distributions of surface mass balance between concordia and vostok stations, antarctica, from combined radar and ice core data: first results and detailed error analysis |
publisher |
Copernicus Publications |
publishDate |
2018 |
url |
https://doi.org/10.5194/tc-12-1831-2018 https://www.the-cryosphere.net/12/1831/2018/tc-12-1831-2018.pdf https://doaj.org/article/9adb51b264164f9db9c344c84a08661b |
geographic |
Antarctic |
geographic_facet |
Antarctic |
genre |
Antarc* Antarctic Antarctica ice core The Cryosphere |
genre_facet |
Antarc* Antarctic Antarctica ice core The Cryosphere |
op_source |
The Cryosphere, Vol 12, Pp 1831-1850 (2018) |
op_relation |
doi:10.5194/tc-12-1831-2018 1994-0416 1994-0424 https://www.the-cryosphere.net/12/1831/2018/tc-12-1831-2018.pdf https://doaj.org/article/9adb51b264164f9db9c344c84a08661b |
op_rights |
undefined |
op_doi |
https://doi.org/10.5194/tc-12-1831-2018 |
container_title |
The Cryosphere |
container_volume |
12 |
container_issue |
5 |
container_start_page |
1831 |
op_container_end_page |
1850 |
_version_ |
1766186303174475776 |