Brief communication: Light-absorbing impurities can reduce the density of melting snow
Climatic effects of black carbon (BC) deposition on snow have been proposed to result from reduced snow albedo and increased melt due to light-absorbing particles. In this study, we hypothesize that BC may decrease the liquid-water retention capacity of melting snow, and present our first data, wher...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2014
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-8-991-2014 http://www.the-cryosphere.net/8/991/2014/tc-8-991-2014.pdf https://doaj.org/article/9a56283bc35f4a54a308f0b5d56369b2 |
Summary: | Climatic effects of black carbon (BC) deposition on snow have been proposed to result from reduced snow albedo and increased melt due to light-absorbing particles. In this study, we hypothesize that BC may decrease the liquid-water retention capacity of melting snow, and present our first data, where both the snow density and elemental carbon content were measured. In our experiments, artificially added light-absorbing impurities decreased the density of seasonally melting natural snow. No relationship was found in case of natural non-melting snow. We also suggest three possible processes that might lead to lower snow density. |
---|