Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries
Ocean-driven ice loss from the West Antarctic Ice Sheet is a significant contributor to sea-level rise. Recent ocean variability in the Amundsen Sea is controlled by near-surface winds. We combine palaeoclimate reconstructions and climate model simulations to understand past and future influences on...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2022
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-16-5085-2022 https://tc.copernicus.org/articles/16/5085/2022/tc-16-5085-2022.pdf https://doaj.org/article/87bd7d19a48b4dc9ad9e1cd7c570135d |
id |
fttriple:oai:gotriple.eu:oai:doaj.org/article:87bd7d19a48b4dc9ad9e1cd7c570135d |
---|---|
record_format |
openpolar |
spelling |
fttriple:oai:gotriple.eu:oai:doaj.org/article:87bd7d19a48b4dc9ad9e1cd7c570135d 2023-05-15T13:23:30+02:00 Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries P. R. Holland G. K. O'Connor T. J. Bracegirdle P. Dutrieux K. A. Naughten E. J. Steig D. P. Schneider A. Jenkins J. A. Smith 2022-12-01 https://doi.org/10.5194/tc-16-5085-2022 https://tc.copernicus.org/articles/16/5085/2022/tc-16-5085-2022.pdf https://doaj.org/article/87bd7d19a48b4dc9ad9e1cd7c570135d en eng Copernicus Publications doi:10.5194/tc-16-5085-2022 1994-0416 1994-0424 https://tc.copernicus.org/articles/16/5085/2022/tc-16-5085-2022.pdf https://doaj.org/article/87bd7d19a48b4dc9ad9e1cd7c570135d undefined The Cryosphere, Vol 16, Pp 5085-5105 (2022) geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2022 fttriple https://doi.org/10.5194/tc-16-5085-2022 2023-01-22T19:05:57Z Ocean-driven ice loss from the West Antarctic Ice Sheet is a significant contributor to sea-level rise. Recent ocean variability in the Amundsen Sea is controlled by near-surface winds. We combine palaeoclimate reconstructions and climate model simulations to understand past and future influences on Amundsen Sea winds from anthropogenic forcing and internal climate variability. The reconstructions show strong historical wind trends. External forcing from greenhouse gases and stratospheric ozone depletion drove zonally uniform westerly wind trends centred over the deep Southern Ocean. Internally generated trends resemble a South Pacific Rossby wave train and were highly influential over the Amundsen Sea continental shelf. There was strong interannual and interdecadal variability over the Amundsen Sea, with periods of anticyclonic wind anomalies in the 1940s and 1990s, when rapid ice-sheet loss was initiated. Similar anticyclonic anomalies probably occurred prior to the 20th century but without causing the present ice loss. This suggests that ice loss may have been triggered naturally in the 1940s but failed to recover subsequently due to the increasing importance of anthropogenic forcing from greenhouse gases (since the 1960s) and ozone depletion (since the 1980s). Future projections also feature strong wind trends. Emissions mitigation influences wind trends over the deep Southern Ocean but has less influence on winds over the Amundsen Sea shelf, where internal variability creates a large and irreducible uncertainty. This suggests that strong emissions mitigation is needed to minimise ice loss this century but that the uncontrollable future influence of internal climate variability could be equally important. Article in Journal/Newspaper Amundsen Sea Antarc* Antarctic Antarctica Ice Sheet Southern Ocean The Cryosphere West Antarctica Unknown Antarctic Southern Ocean West Antarctica Amundsen Sea West Antarctic Ice Sheet Pacific The Cryosphere 16 12 5085 5105 |
institution |
Open Polar |
collection |
Unknown |
op_collection_id |
fttriple |
language |
English |
topic |
geo envir |
spellingShingle |
geo envir P. R. Holland G. K. O'Connor T. J. Bracegirdle P. Dutrieux K. A. Naughten E. J. Steig D. P. Schneider A. Jenkins J. A. Smith Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries |
topic_facet |
geo envir |
description |
Ocean-driven ice loss from the West Antarctic Ice Sheet is a significant contributor to sea-level rise. Recent ocean variability in the Amundsen Sea is controlled by near-surface winds. We combine palaeoclimate reconstructions and climate model simulations to understand past and future influences on Amundsen Sea winds from anthropogenic forcing and internal climate variability. The reconstructions show strong historical wind trends. External forcing from greenhouse gases and stratospheric ozone depletion drove zonally uniform westerly wind trends centred over the deep Southern Ocean. Internally generated trends resemble a South Pacific Rossby wave train and were highly influential over the Amundsen Sea continental shelf. There was strong interannual and interdecadal variability over the Amundsen Sea, with periods of anticyclonic wind anomalies in the 1940s and 1990s, when rapid ice-sheet loss was initiated. Similar anticyclonic anomalies probably occurred prior to the 20th century but without causing the present ice loss. This suggests that ice loss may have been triggered naturally in the 1940s but failed to recover subsequently due to the increasing importance of anthropogenic forcing from greenhouse gases (since the 1960s) and ozone depletion (since the 1980s). Future projections also feature strong wind trends. Emissions mitigation influences wind trends over the deep Southern Ocean but has less influence on winds over the Amundsen Sea shelf, where internal variability creates a large and irreducible uncertainty. This suggests that strong emissions mitigation is needed to minimise ice loss this century but that the uncontrollable future influence of internal climate variability could be equally important. |
format |
Article in Journal/Newspaper |
author |
P. R. Holland G. K. O'Connor T. J. Bracegirdle P. Dutrieux K. A. Naughten E. J. Steig D. P. Schneider A. Jenkins J. A. Smith |
author_facet |
P. R. Holland G. K. O'Connor T. J. Bracegirdle P. Dutrieux K. A. Naughten E. J. Steig D. P. Schneider A. Jenkins J. A. Smith |
author_sort |
P. R. Holland |
title |
Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries |
title_short |
Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries |
title_full |
Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries |
title_fullStr |
Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries |
title_full_unstemmed |
Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries |
title_sort |
anthropogenic and internal drivers of wind changes over the amundsen sea, west antarctica, during the 20th and 21st centuries |
publisher |
Copernicus Publications |
publishDate |
2022 |
url |
https://doi.org/10.5194/tc-16-5085-2022 https://tc.copernicus.org/articles/16/5085/2022/tc-16-5085-2022.pdf https://doaj.org/article/87bd7d19a48b4dc9ad9e1cd7c570135d |
geographic |
Antarctic Southern Ocean West Antarctica Amundsen Sea West Antarctic Ice Sheet Pacific |
geographic_facet |
Antarctic Southern Ocean West Antarctica Amundsen Sea West Antarctic Ice Sheet Pacific |
genre |
Amundsen Sea Antarc* Antarctic Antarctica Ice Sheet Southern Ocean The Cryosphere West Antarctica |
genre_facet |
Amundsen Sea Antarc* Antarctic Antarctica Ice Sheet Southern Ocean The Cryosphere West Antarctica |
op_source |
The Cryosphere, Vol 16, Pp 5085-5105 (2022) |
op_relation |
doi:10.5194/tc-16-5085-2022 1994-0416 1994-0424 https://tc.copernicus.org/articles/16/5085/2022/tc-16-5085-2022.pdf https://doaj.org/article/87bd7d19a48b4dc9ad9e1cd7c570135d |
op_rights |
undefined |
op_doi |
https://doi.org/10.5194/tc-16-5085-2022 |
container_title |
The Cryosphere |
container_volume |
16 |
container_issue |
12 |
container_start_page |
5085 |
op_container_end_page |
5105 |
_version_ |
1766372771727671296 |