Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica

Understanding the interannual variability of surface mass balance (SMB) and surface melting in Antarctica is key to quantify the signal-to-noise ratio in climate trends, identify opportunities for multi-year climate predictions and assess the ability of climate models to respond to climate variabili...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: M. Donat-Magnin, N. C. Jourdain, H. Gallée, C. Amory, C. Kittel, X. Fettweis, J. D. Wille, V. Favier, A. Drira, C. Agosta
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2020
Subjects:
geo
Soi
Online Access:https://doi.org/10.5194/tc-14-229-2020
https://www.the-cryosphere.net/14/229/2020/tc-14-229-2020.pdf
https://doaj.org/article/6c1e7fbdf89043e680fc31aa0a60e466
id fttriple:oai:gotriple.eu:oai:doaj.org/article:6c1e7fbdf89043e680fc31aa0a60e466
record_format openpolar
spelling fttriple:oai:gotriple.eu:oai:doaj.org/article:6c1e7fbdf89043e680fc31aa0a60e466 2023-05-15T13:23:49+02:00 Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica M. Donat-Magnin N. C. Jourdain H. Gallée C. Amory C. Kittel X. Fettweis J. D. Wille V. Favier A. Drira C. Agosta 2020-01-01 https://doi.org/10.5194/tc-14-229-2020 https://www.the-cryosphere.net/14/229/2020/tc-14-229-2020.pdf https://doaj.org/article/6c1e7fbdf89043e680fc31aa0a60e466 en eng Copernicus Publications doi:10.5194/tc-14-229-2020 1994-0416 1994-0424 https://www.the-cryosphere.net/14/229/2020/tc-14-229-2020.pdf https://doaj.org/article/6c1e7fbdf89043e680fc31aa0a60e466 undefined The Cryosphere, Vol 14, Pp 229-249 (2020) geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2020 fttriple https://doi.org/10.5194/tc-14-229-2020 2023-01-22T19:15:36Z Understanding the interannual variability of surface mass balance (SMB) and surface melting in Antarctica is key to quantify the signal-to-noise ratio in climate trends, identify opportunities for multi-year climate predictions and assess the ability of climate models to respond to climate variability. Here we simulate summer SMB and surface melting from 1979 to 2017 using the Regional Atmosphere Model (MAR) at 10 km resolution over the drainage basins of the Amundsen Sea glaciers in West Antarctica. Our simulations reproduce the mean present-day climate in terms of near-surface temperature (mean overestimation of 0.10 ∘C), near-surface wind speed (mean underestimation of 0.42 m s−1), and SMB (relative bias <20 % over Thwaites glacier). The simulated interannual variability of SMB and melting is also close to observation-based estimates. For all the Amundsen glacial drainage basins, the interannual variability of summer SMB and surface melting is driven by two distinct mechanisms: high summer SMB tends to occur when the Amundsen Sea Low (ASL) is shifted southward and westward, while high summer melt rates tend to occur when ASL is shallower (i.e. anticyclonic anomaly). Both mechanisms create a northerly flow anomaly that increases moisture convergence and cloud cover over the Amundsen Sea and therefore favors snowfall and downward longwave radiation over the ice sheet. The part of interannual summer SMB variance explained by the ASL longitudinal migrations increases westward and reaches 40 % for Getz. Interannual variation in the ASL relative central pressure is the largest driver of melt rate variability, with 11 % to 21 % of explained variance (increasing westward). While high summer SMB and melt rates are both favored by positive phases of El Niño–Southern Oscillation (ENSO), the Southern Oscillation Index (SOI) only explains 5 % to 16 % of SMB or melt rate interannual variance in our simulations, with moderate statistical significance. However, the part explained by SOI in the previous austral winter is ... Article in Journal/Newspaper Amundsen Sea Antarc* Antarctica Ice Sheet The Cryosphere Thwaites Glacier West Antarctica Unknown Amundsen Sea Austral Getz ENVELOPE(-145.217,-145.217,-76.550,-76.550) Soi ENVELOPE(30.704,30.704,66.481,66.481) Thwaites Glacier ENVELOPE(-106.750,-106.750,-75.500,-75.500) West Antarctica The Cryosphere 14 1 229 249
institution Open Polar
collection Unknown
op_collection_id fttriple
language English
topic geo
envir
spellingShingle geo
envir
M. Donat-Magnin
N. C. Jourdain
H. Gallée
C. Amory
C. Kittel
X. Fettweis
J. D. Wille
V. Favier
A. Drira
C. Agosta
Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica
topic_facet geo
envir
description Understanding the interannual variability of surface mass balance (SMB) and surface melting in Antarctica is key to quantify the signal-to-noise ratio in climate trends, identify opportunities for multi-year climate predictions and assess the ability of climate models to respond to climate variability. Here we simulate summer SMB and surface melting from 1979 to 2017 using the Regional Atmosphere Model (MAR) at 10 km resolution over the drainage basins of the Amundsen Sea glaciers in West Antarctica. Our simulations reproduce the mean present-day climate in terms of near-surface temperature (mean overestimation of 0.10 ∘C), near-surface wind speed (mean underestimation of 0.42 m s−1), and SMB (relative bias <20 % over Thwaites glacier). The simulated interannual variability of SMB and melting is also close to observation-based estimates. For all the Amundsen glacial drainage basins, the interannual variability of summer SMB and surface melting is driven by two distinct mechanisms: high summer SMB tends to occur when the Amundsen Sea Low (ASL) is shifted southward and westward, while high summer melt rates tend to occur when ASL is shallower (i.e. anticyclonic anomaly). Both mechanisms create a northerly flow anomaly that increases moisture convergence and cloud cover over the Amundsen Sea and therefore favors snowfall and downward longwave radiation over the ice sheet. The part of interannual summer SMB variance explained by the ASL longitudinal migrations increases westward and reaches 40 % for Getz. Interannual variation in the ASL relative central pressure is the largest driver of melt rate variability, with 11 % to 21 % of explained variance (increasing westward). While high summer SMB and melt rates are both favored by positive phases of El Niño–Southern Oscillation (ENSO), the Southern Oscillation Index (SOI) only explains 5 % to 16 % of SMB or melt rate interannual variance in our simulations, with moderate statistical significance. However, the part explained by SOI in the previous austral winter is ...
format Article in Journal/Newspaper
author M. Donat-Magnin
N. C. Jourdain
H. Gallée
C. Amory
C. Kittel
X. Fettweis
J. D. Wille
V. Favier
A. Drira
C. Agosta
author_facet M. Donat-Magnin
N. C. Jourdain
H. Gallée
C. Amory
C. Kittel
X. Fettweis
J. D. Wille
V. Favier
A. Drira
C. Agosta
author_sort M. Donat-Magnin
title Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica
title_short Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica
title_full Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica
title_fullStr Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica
title_full_unstemmed Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica
title_sort interannual variability of summer surface mass balance and surface melting in the amundsen sector, west antarctica
publisher Copernicus Publications
publishDate 2020
url https://doi.org/10.5194/tc-14-229-2020
https://www.the-cryosphere.net/14/229/2020/tc-14-229-2020.pdf
https://doaj.org/article/6c1e7fbdf89043e680fc31aa0a60e466
long_lat ENVELOPE(-145.217,-145.217,-76.550,-76.550)
ENVELOPE(30.704,30.704,66.481,66.481)
ENVELOPE(-106.750,-106.750,-75.500,-75.500)
geographic Amundsen Sea
Austral
Getz
Soi
Thwaites Glacier
West Antarctica
geographic_facet Amundsen Sea
Austral
Getz
Soi
Thwaites Glacier
West Antarctica
genre Amundsen Sea
Antarc*
Antarctica
Ice Sheet
The Cryosphere
Thwaites Glacier
West Antarctica
genre_facet Amundsen Sea
Antarc*
Antarctica
Ice Sheet
The Cryosphere
Thwaites Glacier
West Antarctica
op_source The Cryosphere, Vol 14, Pp 229-249 (2020)
op_relation doi:10.5194/tc-14-229-2020
1994-0416
1994-0424
https://www.the-cryosphere.net/14/229/2020/tc-14-229-2020.pdf
https://doaj.org/article/6c1e7fbdf89043e680fc31aa0a60e466
op_rights undefined
op_doi https://doi.org/10.5194/tc-14-229-2020
container_title The Cryosphere
container_volume 14
container_issue 1
container_start_page 229
op_container_end_page 249
_version_ 1766375561284812800