Clouds drive differences in future surface melt over the Antarctic ice shelves
Recent warm atmospheric conditions have damaged the ice shelves of the Antarctic Peninsula through surface melt and hydrofracturing and could potentially initiate future collapse of other Antarctic ice shelves. However, model projections with similar greenhouse gas scenarios suggest large difference...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2022
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-16-2655-2022 https://tc.copernicus.org/articles/16/2655/2022/tc-16-2655-2022.pdf https://doaj.org/article/66d0ef16beed48ea8f18f68de4860717 |
id |
fttriple:oai:gotriple.eu:oai:doaj.org/article:66d0ef16beed48ea8f18f68de4860717 |
---|---|
record_format |
openpolar |
spelling |
fttriple:oai:gotriple.eu:oai:doaj.org/article:66d0ef16beed48ea8f18f68de4860717 2023-05-15T14:03:53+02:00 Clouds drive differences in future surface melt over the Antarctic ice shelves C. Kittel C. Amory S. Hofer C. Agosta N. C. Jourdain E. Gilbert L. Le Toumelin É. Vignon H. Gallée X. Fettweis 2022-07-01 https://doi.org/10.5194/tc-16-2655-2022 https://tc.copernicus.org/articles/16/2655/2022/tc-16-2655-2022.pdf https://doaj.org/article/66d0ef16beed48ea8f18f68de4860717 en eng Copernicus Publications doi:10.5194/tc-16-2655-2022 1994-0416 1994-0424 https://tc.copernicus.org/articles/16/2655/2022/tc-16-2655-2022.pdf https://doaj.org/article/66d0ef16beed48ea8f18f68de4860717 undefined The Cryosphere, Vol 16, Pp 2655-2669 (2022) geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2022 fttriple https://doi.org/10.5194/tc-16-2655-2022 2023-01-22T17:53:14Z Recent warm atmospheric conditions have damaged the ice shelves of the Antarctic Peninsula through surface melt and hydrofracturing and could potentially initiate future collapse of other Antarctic ice shelves. However, model projections with similar greenhouse gas scenarios suggest large differences in cumulative 21st-century surface melting. So far it remains unclear whether these differences are due to variations in warming rates in individual models or whether local feedback mechanisms of the surface energy budget could also play a notable role. Here we use the polar-oriented regional climate model MAR (Modèle Atmosphérique Régional) to study the physical mechanisms that would control future surface melt over the Antarctic ice shelves in high-emission scenarios RCP8.5 and SSP5-8.5. We show that clouds enhance future surface melt by increasing the atmospheric emissivity and longwave radiation towards the surface. Furthermore, we highlight that differences in meltwater production for the same climate warming rate depend on cloud properties and particularly cloud phase. Clouds containing a larger amount of supercooled liquid water lead to stronger melt, subsequently favouring the absorption of solar radiation due to the snowmelt–albedo feedback. As liquid-containing clouds are projected to increase the melt spread associated with a given warming rate, they could be a major source of uncertainties in projections of the future Antarctic contribution to sea level rise. Article in Journal/Newspaper Antarc* Antarctic Antarctic Peninsula Ice Shelves The Cryosphere Unknown Antarctic Antarctic Peninsula The Antarctic The Cryosphere 16 7 2655 2669 |
institution |
Open Polar |
collection |
Unknown |
op_collection_id |
fttriple |
language |
English |
topic |
geo envir |
spellingShingle |
geo envir C. Kittel C. Amory S. Hofer C. Agosta N. C. Jourdain E. Gilbert L. Le Toumelin É. Vignon H. Gallée X. Fettweis Clouds drive differences in future surface melt over the Antarctic ice shelves |
topic_facet |
geo envir |
description |
Recent warm atmospheric conditions have damaged the ice shelves of the Antarctic Peninsula through surface melt and hydrofracturing and could potentially initiate future collapse of other Antarctic ice shelves. However, model projections with similar greenhouse gas scenarios suggest large differences in cumulative 21st-century surface melting. So far it remains unclear whether these differences are due to variations in warming rates in individual models or whether local feedback mechanisms of the surface energy budget could also play a notable role. Here we use the polar-oriented regional climate model MAR (Modèle Atmosphérique Régional) to study the physical mechanisms that would control future surface melt over the Antarctic ice shelves in high-emission scenarios RCP8.5 and SSP5-8.5. We show that clouds enhance future surface melt by increasing the atmospheric emissivity and longwave radiation towards the surface. Furthermore, we highlight that differences in meltwater production for the same climate warming rate depend on cloud properties and particularly cloud phase. Clouds containing a larger amount of supercooled liquid water lead to stronger melt, subsequently favouring the absorption of solar radiation due to the snowmelt–albedo feedback. As liquid-containing clouds are projected to increase the melt spread associated with a given warming rate, they could be a major source of uncertainties in projections of the future Antarctic contribution to sea level rise. |
format |
Article in Journal/Newspaper |
author |
C. Kittel C. Amory S. Hofer C. Agosta N. C. Jourdain E. Gilbert L. Le Toumelin É. Vignon H. Gallée X. Fettweis |
author_facet |
C. Kittel C. Amory S. Hofer C. Agosta N. C. Jourdain E. Gilbert L. Le Toumelin É. Vignon H. Gallée X. Fettweis |
author_sort |
C. Kittel |
title |
Clouds drive differences in future surface melt over the Antarctic ice shelves |
title_short |
Clouds drive differences in future surface melt over the Antarctic ice shelves |
title_full |
Clouds drive differences in future surface melt over the Antarctic ice shelves |
title_fullStr |
Clouds drive differences in future surface melt over the Antarctic ice shelves |
title_full_unstemmed |
Clouds drive differences in future surface melt over the Antarctic ice shelves |
title_sort |
clouds drive differences in future surface melt over the antarctic ice shelves |
publisher |
Copernicus Publications |
publishDate |
2022 |
url |
https://doi.org/10.5194/tc-16-2655-2022 https://tc.copernicus.org/articles/16/2655/2022/tc-16-2655-2022.pdf https://doaj.org/article/66d0ef16beed48ea8f18f68de4860717 |
geographic |
Antarctic Antarctic Peninsula The Antarctic |
geographic_facet |
Antarctic Antarctic Peninsula The Antarctic |
genre |
Antarc* Antarctic Antarctic Peninsula Ice Shelves The Cryosphere |
genre_facet |
Antarc* Antarctic Antarctic Peninsula Ice Shelves The Cryosphere |
op_source |
The Cryosphere, Vol 16, Pp 2655-2669 (2022) |
op_relation |
doi:10.5194/tc-16-2655-2022 1994-0416 1994-0424 https://tc.copernicus.org/articles/16/2655/2022/tc-16-2655-2022.pdf https://doaj.org/article/66d0ef16beed48ea8f18f68de4860717 |
op_rights |
undefined |
op_doi |
https://doi.org/10.5194/tc-16-2655-2022 |
container_title |
The Cryosphere |
container_volume |
16 |
container_issue |
7 |
container_start_page |
2655 |
op_container_end_page |
2669 |
_version_ |
1766274744469946368 |