Leading El-Niño SST Oscillations around the Southern South American Continent

The inter-annual variations in the sea surface temperatures (SSTs) of the tropical and subtropical Pacific Ocean have been widely investigated, largely due to their importance in achieving the sustainable development of marine ecosystems under a changing climate. The El Niño-Southern Oscillation (EN...

Full description

Bibliographic Details
Published in:Sustainability
Main Authors: Yu-Chen Hsu, Chung-Pan Lee, You-Lin Wang, Chau-Ron Wu, Hon-Kit Lui
Format: Article in Journal/Newspaper
Language:English
Published: MDPI AG 2018
Subjects:
ACC
SST
geo
Online Access:https://doi.org/10.3390/su10061783
https://doaj.org/article/5ff72c514b2a4b1ca1b2268464b3303d
Description
Summary:The inter-annual variations in the sea surface temperatures (SSTs) of the tropical and subtropical Pacific Ocean have been widely investigated, largely due to their importance in achieving the sustainable development of marine ecosystems under a changing climate. The El Niño-Southern Oscillation (ENSO) is a widely recognized variability. In the subpolar region in the southern hemisphere, the Antarctic Circumpolar Current (ACC) is one of the main sources of the Peru Current. A change in the SST in the Southern Ocean may change the physical properties of the seawater in the tropical and subtropical Pacific Ocean. However, the variations in the SST in the Southern Ocean have rarely been addressed. This study uses a 147-year (1870–2016) dataset from the Met Office Hadley Centre to show that the SST anomalies (SSTAs) in the oceans west and east of South America and the Antarctic Peninsula have strong positive (R = 0.56) and negative (R = −0.67) correlations with the Niño 3.4 SSTA, respectively. Such correlations are likely related to the changes in circulations of the ACC. We further show that, statistically, the temporal variations in the SSTAs of the ACC lead the Niño 3.4 SSTA by four to six months. Such findings imply that change in the strength of ENSO or circulation under the changing climate could change the climate in regions at higher latitudes as well.