The unidentified eruption of 1809: a climatic cold case

The “1809 eruption” is one of the most recent unidentified volcanic eruptions with a global climate impact. Even though the eruption ranks as the third largest since 1500 with a sulfur emission strength estimated to be 2 times that of the 1991 eruption of Pinatubo, not much is known of it from histo...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: C. Timmreck, M. Toohey, D. Zanchettin, S. Brönnimann, E. Lundstad, R. Wilson
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2021
Subjects:
geo
Online Access:https://doi.org/10.5194/cp-17-1455-2021
https://cp.copernicus.org/articles/17/1455/2021/cp-17-1455-2021.pdf
https://doaj.org/article/583d32a5a74940f0a603ed4421bc5863
id fttriple:oai:gotriple.eu:oai:doaj.org/article:583d32a5a74940f0a603ed4421bc5863
record_format openpolar
spelling fttriple:oai:gotriple.eu:oai:doaj.org/article:583d32a5a74940f0a603ed4421bc5863 2023-05-15T16:39:23+02:00 The unidentified eruption of 1809: a climatic cold case C. Timmreck M. Toohey D. Zanchettin S. Brönnimann E. Lundstad R. Wilson 2021-07-01 https://doi.org/10.5194/cp-17-1455-2021 https://cp.copernicus.org/articles/17/1455/2021/cp-17-1455-2021.pdf https://doaj.org/article/583d32a5a74940f0a603ed4421bc5863 en eng Copernicus Publications doi:10.5194/cp-17-1455-2021 1814-9324 1814-9332 https://cp.copernicus.org/articles/17/1455/2021/cp-17-1455-2021.pdf https://doaj.org/article/583d32a5a74940f0a603ed4421bc5863 undefined Climate of the Past, Vol 17, Pp 1455-1482 (2021) geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2021 fttriple https://doi.org/10.5194/cp-17-1455-2021 2023-01-22T19:26:19Z The “1809 eruption” is one of the most recent unidentified volcanic eruptions with a global climate impact. Even though the eruption ranks as the third largest since 1500 with a sulfur emission strength estimated to be 2 times that of the 1991 eruption of Pinatubo, not much is known of it from historic sources. Based on a compilation of instrumental and reconstructed temperature time series, we show here that tropical temperatures show a significant drop in response to the ∼ 1809 eruption that is similar to that produced by the Mt. Tambora eruption in 1815, while the response of Northern Hemisphere (NH) boreal summer temperature is spatially heterogeneous. We test the sensitivity of the climate response simulated by the MPI Earth system model to a range of volcanic forcing estimates constructed using estimated volcanic stratospheric sulfur injections (VSSIs) and uncertainties from ice-core records. Three of the forcing reconstructions represent a tropical eruption with an approximately symmetric hemispheric aerosol spread but different forcing magnitudes, while a fourth reflects a hemispherically asymmetric scenario without volcanic forcing in the NH extratropics. Observed and reconstructed post-volcanic surface NH summer temperature anomalies lie within the range of all the scenario simulations. Therefore, assuming the model climate sensitivity is correct, the VSSI estimate is accurate within the uncertainty bounds. Comparison of observed and simulated tropical temperature anomalies suggests that the most likely VSSI for the 1809 eruption would be somewhere between 12 and 19 Tg of sulfur. Model results show that NH large-scale climate modes are sensitive to both volcanic forcing strength and its spatial structure. While spatial correlations between the N-TREND NH temperature reconstruction and the model simulations are weak in terms of the ensemble-mean model results, individual model simulations show good correlation over North America and Europe, suggesting the spatial heterogeneity of the 1810 cooling could ... Article in Journal/Newspaper ice core Unknown Climate of the Past 17 4 1455 1482
institution Open Polar
collection Unknown
op_collection_id fttriple
language English
topic geo
envir
spellingShingle geo
envir
C. Timmreck
M. Toohey
D. Zanchettin
S. Brönnimann
E. Lundstad
R. Wilson
The unidentified eruption of 1809: a climatic cold case
topic_facet geo
envir
description The “1809 eruption” is one of the most recent unidentified volcanic eruptions with a global climate impact. Even though the eruption ranks as the third largest since 1500 with a sulfur emission strength estimated to be 2 times that of the 1991 eruption of Pinatubo, not much is known of it from historic sources. Based on a compilation of instrumental and reconstructed temperature time series, we show here that tropical temperatures show a significant drop in response to the ∼ 1809 eruption that is similar to that produced by the Mt. Tambora eruption in 1815, while the response of Northern Hemisphere (NH) boreal summer temperature is spatially heterogeneous. We test the sensitivity of the climate response simulated by the MPI Earth system model to a range of volcanic forcing estimates constructed using estimated volcanic stratospheric sulfur injections (VSSIs) and uncertainties from ice-core records. Three of the forcing reconstructions represent a tropical eruption with an approximately symmetric hemispheric aerosol spread but different forcing magnitudes, while a fourth reflects a hemispherically asymmetric scenario without volcanic forcing in the NH extratropics. Observed and reconstructed post-volcanic surface NH summer temperature anomalies lie within the range of all the scenario simulations. Therefore, assuming the model climate sensitivity is correct, the VSSI estimate is accurate within the uncertainty bounds. Comparison of observed and simulated tropical temperature anomalies suggests that the most likely VSSI for the 1809 eruption would be somewhere between 12 and 19 Tg of sulfur. Model results show that NH large-scale climate modes are sensitive to both volcanic forcing strength and its spatial structure. While spatial correlations between the N-TREND NH temperature reconstruction and the model simulations are weak in terms of the ensemble-mean model results, individual model simulations show good correlation over North America and Europe, suggesting the spatial heterogeneity of the 1810 cooling could ...
format Article in Journal/Newspaper
author C. Timmreck
M. Toohey
D. Zanchettin
S. Brönnimann
E. Lundstad
R. Wilson
author_facet C. Timmreck
M. Toohey
D. Zanchettin
S. Brönnimann
E. Lundstad
R. Wilson
author_sort C. Timmreck
title The unidentified eruption of 1809: a climatic cold case
title_short The unidentified eruption of 1809: a climatic cold case
title_full The unidentified eruption of 1809: a climatic cold case
title_fullStr The unidentified eruption of 1809: a climatic cold case
title_full_unstemmed The unidentified eruption of 1809: a climatic cold case
title_sort unidentified eruption of 1809: a climatic cold case
publisher Copernicus Publications
publishDate 2021
url https://doi.org/10.5194/cp-17-1455-2021
https://cp.copernicus.org/articles/17/1455/2021/cp-17-1455-2021.pdf
https://doaj.org/article/583d32a5a74940f0a603ed4421bc5863
genre ice core
genre_facet ice core
op_source Climate of the Past, Vol 17, Pp 1455-1482 (2021)
op_relation doi:10.5194/cp-17-1455-2021
1814-9324
1814-9332
https://cp.copernicus.org/articles/17/1455/2021/cp-17-1455-2021.pdf
https://doaj.org/article/583d32a5a74940f0a603ed4421bc5863
op_rights undefined
op_doi https://doi.org/10.5194/cp-17-1455-2021
container_title Climate of the Past
container_volume 17
container_issue 4
container_start_page 1455
op_container_end_page 1482
_version_ 1766029723009286144