Synthesis of Mesoporous Silica Nanowires and Their Application in Enzyme Immobilization
Hydrophobic mesoporous silica nanowires were synthesis and then employed as support for immobilization of lipase from Candida antarctica via covalent bonding (CALB@MSW). The parameters were optimized and the optimum conditions were as follows: GA concentration 5.5 wt.%, activation time 60 min and CA...
Published in: | E3S Web of Conferences |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English French |
Published: |
EDP Sciences
2021
|
Subjects: | |
Online Access: | https://doi.org/10.1051/e3sconf/202124503006 https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/21/e3sconf_aeecs2021_03006.pdf https://doaj.org/article/4141a34be5fb45dd9a13490f118df817 |
Summary: | Hydrophobic mesoporous silica nanowires were synthesis and then employed as support for immobilization of lipase from Candida antarctica via covalent bonding (CALB@MSW). The parameters were optimized and the optimum conditions were as follows: GA concentration 5.5 wt.%, activation time 60 min and CALB concentration 4 mg/mL. Under these conditions, the protein loading and specific activity of CALB@MSW were 138.3 mg/gsupport and 41.1 U/mgsupport, respectively. Compared with free CALB, CALB@MSW showed better thermal stability and pH stability. The maximum yield of biodiesel catalytic by CALB@MSW was 93.4 %. After reused 8 times, CALB@MSW still remained 95.75 % initial activity showing better stability than free CALB. |
---|