Modelling surface temperature and radiation budget of snow-covered complex terrain

The surface temperature controls the temporal evolution of the snowpack, playing a key role in metamorphism and snowmelt. It shows large spatial variations in mountainous areas because the surface energy budget is affected by the topography, for instance because of the modulation of the short-wave i...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: A. Robledano, G. Picard, L. Arnaud, F. Larue, I. Ollivier
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2022
Subjects:
geo
Online Access:https://doi.org/10.5194/tc-16-559-2022
https://tc.copernicus.org/articles/16/559/2022/tc-16-559-2022.pdf
https://doaj.org/article/3a9a5176378046c3940199cc8194f671
id fttriple:oai:gotriple.eu:oai:doaj.org/article:3a9a5176378046c3940199cc8194f671
record_format openpolar
spelling fttriple:oai:gotriple.eu:oai:doaj.org/article:3a9a5176378046c3940199cc8194f671 2023-05-15T18:32:17+02:00 Modelling surface temperature and radiation budget of snow-covered complex terrain A. Robledano G. Picard L. Arnaud F. Larue I. Ollivier 2022-02-01 https://doi.org/10.5194/tc-16-559-2022 https://tc.copernicus.org/articles/16/559/2022/tc-16-559-2022.pdf https://doaj.org/article/3a9a5176378046c3940199cc8194f671 en eng Copernicus Publications doi:10.5194/tc-16-559-2022 1994-0416 1994-0424 https://tc.copernicus.org/articles/16/559/2022/tc-16-559-2022.pdf https://doaj.org/article/3a9a5176378046c3940199cc8194f671 undefined The Cryosphere, Vol 16, Pp 559-579 (2022) geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2022 fttriple https://doi.org/10.5194/tc-16-559-2022 2023-01-22T17:35:03Z The surface temperature controls the temporal evolution of the snowpack, playing a key role in metamorphism and snowmelt. It shows large spatial variations in mountainous areas because the surface energy budget is affected by the topography, for instance because of the modulation of the short-wave irradiance by the local slope and the shadows and the short-wave and long-wave re-illumination of the surface from surrounding slopes. These topographic effects are often neglected in large-scale models considering the surface to be flat and smooth. Here we aim at estimating the surface temperature of snow-covered mountainous terrain in clear-sky conditions in order to evaluate the relative importance of the different processes that control the spatial variations. For this, a modelling chain is implemented to compute the surface temperature in a kilometre-wide area from local radiometric and meteorological measurements at a single station. The first component of this chain is the Rough Surface Ray-Tracing (RSRT) model. Based on a photon transport Monte Carlo algorithm, this model quantifies the incident and reflected short-wave radiation on every facet of the mesh describing the snow-covered terrain. The second component is a surface scheme that estimates the terms of the surface energy budget from which the surface temperature is eventually estimated. To assess the modelling chain performance, we use in situ measurements of surface temperature and satellite thermal observations (Landsat 8) in the Col du Lautaret area, in the French Alps. The results of the simulations show (i) an agreement between the simulated and measured surface temperature at the station for a diurnal cycle in winter within 0.2 ∘C; (ii) that the spatial variations in surface temperature are on the order of 5 to 10 ∘C in the domain and are well represented by the model; and (iii) that the topographic effects ranked by importance are the modulation of solar irradiance by the local slope, followed by the altitudinal variations in air temperature ... Article in Journal/Newspaper The Cryosphere Unknown The Cryosphere 16 2 559 579
institution Open Polar
collection Unknown
op_collection_id fttriple
language English
topic geo
envir
spellingShingle geo
envir
A. Robledano
G. Picard
L. Arnaud
F. Larue
I. Ollivier
Modelling surface temperature and radiation budget of snow-covered complex terrain
topic_facet geo
envir
description The surface temperature controls the temporal evolution of the snowpack, playing a key role in metamorphism and snowmelt. It shows large spatial variations in mountainous areas because the surface energy budget is affected by the topography, for instance because of the modulation of the short-wave irradiance by the local slope and the shadows and the short-wave and long-wave re-illumination of the surface from surrounding slopes. These topographic effects are often neglected in large-scale models considering the surface to be flat and smooth. Here we aim at estimating the surface temperature of snow-covered mountainous terrain in clear-sky conditions in order to evaluate the relative importance of the different processes that control the spatial variations. For this, a modelling chain is implemented to compute the surface temperature in a kilometre-wide area from local radiometric and meteorological measurements at a single station. The first component of this chain is the Rough Surface Ray-Tracing (RSRT) model. Based on a photon transport Monte Carlo algorithm, this model quantifies the incident and reflected short-wave radiation on every facet of the mesh describing the snow-covered terrain. The second component is a surface scheme that estimates the terms of the surface energy budget from which the surface temperature is eventually estimated. To assess the modelling chain performance, we use in situ measurements of surface temperature and satellite thermal observations (Landsat 8) in the Col du Lautaret area, in the French Alps. The results of the simulations show (i) an agreement between the simulated and measured surface temperature at the station for a diurnal cycle in winter within 0.2 ∘C; (ii) that the spatial variations in surface temperature are on the order of 5 to 10 ∘C in the domain and are well represented by the model; and (iii) that the topographic effects ranked by importance are the modulation of solar irradiance by the local slope, followed by the altitudinal variations in air temperature ...
format Article in Journal/Newspaper
author A. Robledano
G. Picard
L. Arnaud
F. Larue
I. Ollivier
author_facet A. Robledano
G. Picard
L. Arnaud
F. Larue
I. Ollivier
author_sort A. Robledano
title Modelling surface temperature and radiation budget of snow-covered complex terrain
title_short Modelling surface temperature and radiation budget of snow-covered complex terrain
title_full Modelling surface temperature and radiation budget of snow-covered complex terrain
title_fullStr Modelling surface temperature and radiation budget of snow-covered complex terrain
title_full_unstemmed Modelling surface temperature and radiation budget of snow-covered complex terrain
title_sort modelling surface temperature and radiation budget of snow-covered complex terrain
publisher Copernicus Publications
publishDate 2022
url https://doi.org/10.5194/tc-16-559-2022
https://tc.copernicus.org/articles/16/559/2022/tc-16-559-2022.pdf
https://doaj.org/article/3a9a5176378046c3940199cc8194f671
genre The Cryosphere
genre_facet The Cryosphere
op_source The Cryosphere, Vol 16, Pp 559-579 (2022)
op_relation doi:10.5194/tc-16-559-2022
1994-0416
1994-0424
https://tc.copernicus.org/articles/16/559/2022/tc-16-559-2022.pdf
https://doaj.org/article/3a9a5176378046c3940199cc8194f671
op_rights undefined
op_doi https://doi.org/10.5194/tc-16-559-2022
container_title The Cryosphere
container_volume 16
container_issue 2
container_start_page 559
op_container_end_page 579
_version_ 1766216390699646976