Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods

Liquid water stored on the surface of ice sheets and glaciers impacts surface mass balance, ice dynamics, and heat transport. Multispectral remote sensing can be used to detect supraglacial lakes and estimate their depth and area. In this study, we use in situ spectral and bathymetric data to assess...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: A. Pope, T. A. Scambos, M. Moussavi, M. Tedesco, M. Willis, D. Shean, S. Grigsby
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2016
Subjects:
geo
Online Access:https://doi.org/10.5194/tc-10-15-2016
http://www.the-cryosphere.net/10/15/2016/tc-10-15-2016.pdf
https://doaj.org/article/2801800759ef48149e75ca6e04d40487
id fttriple:oai:gotriple.eu:oai:doaj.org/article:2801800759ef48149e75ca6e04d40487
record_format openpolar
spelling fttriple:oai:gotriple.eu:oai:doaj.org/article:2801800759ef48149e75ca6e04d40487 2023-05-15T16:28:01+02:00 Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods A. Pope T. A. Scambos M. Moussavi M. Tedesco M. Willis D. Shean S. Grigsby 2016-01-01 https://doi.org/10.5194/tc-10-15-2016 http://www.the-cryosphere.net/10/15/2016/tc-10-15-2016.pdf https://doaj.org/article/2801800759ef48149e75ca6e04d40487 en eng Copernicus Publications 1994-0416 1994-0424 doi:10.5194/tc-10-15-2016 http://www.the-cryosphere.net/10/15/2016/tc-10-15-2016.pdf https://doaj.org/article/2801800759ef48149e75ca6e04d40487 undefined The Cryosphere, Vol 10, Iss 1, Pp 15-27 (2016) geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2016 fttriple https://doi.org/10.5194/tc-10-15-2016 2023-01-22T19:12:15Z Liquid water stored on the surface of ice sheets and glaciers impacts surface mass balance, ice dynamics, and heat transport. Multispectral remote sensing can be used to detect supraglacial lakes and estimate their depth and area. In this study, we use in situ spectral and bathymetric data to assess lake depth retrieval using the recently launched Landsat 8 Operational Land Imager (OLI). We also extend our analysis to other multispectral sensors to evaluate their performance with similar methods. Digital elevation models derived from WorldView stereo imagery (pre-lake filling and post-drainage) are used to validate spectrally derived depths, combined with a lake edge determination from imagery. The optimal supraglacial lake depth retrieval is a physically based single-band model applied to two OLI bands independently (red and panchromatic) that are then averaged together. When OLI- and WorldView-derived depths are differenced, they yield a mean and standard deviation of 0.0 ± 1.6 m. This method is then applied to OLI data for the Sermeq Kujalleq (Jakobshavn Isbræ) region of Greenland to study the spatial and intra-seasonal variability of supraglacial lakes during summer 2014. We also give coefficients for estimating supraglacial lake depth using a similar method with other multispectral sensors. Article in Journal/Newspaper Greenland Jakobshavn Jakobshavn isbræ Kujalleq Sermeq Kujalleq The Cryosphere Unknown Greenland Jakobshavn Isbræ ENVELOPE(-49.917,-49.917,69.167,69.167) Kujalleq ENVELOPE(-46.037,-46.037,60.719,60.719) The Cryosphere 10 1 15 27
institution Open Polar
collection Unknown
op_collection_id fttriple
language English
topic geo
envir
spellingShingle geo
envir
A. Pope
T. A. Scambos
M. Moussavi
M. Tedesco
M. Willis
D. Shean
S. Grigsby
Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods
topic_facet geo
envir
description Liquid water stored on the surface of ice sheets and glaciers impacts surface mass balance, ice dynamics, and heat transport. Multispectral remote sensing can be used to detect supraglacial lakes and estimate their depth and area. In this study, we use in situ spectral and bathymetric data to assess lake depth retrieval using the recently launched Landsat 8 Operational Land Imager (OLI). We also extend our analysis to other multispectral sensors to evaluate their performance with similar methods. Digital elevation models derived from WorldView stereo imagery (pre-lake filling and post-drainage) are used to validate spectrally derived depths, combined with a lake edge determination from imagery. The optimal supraglacial lake depth retrieval is a physically based single-band model applied to two OLI bands independently (red and panchromatic) that are then averaged together. When OLI- and WorldView-derived depths are differenced, they yield a mean and standard deviation of 0.0 ± 1.6 m. This method is then applied to OLI data for the Sermeq Kujalleq (Jakobshavn Isbræ) region of Greenland to study the spatial and intra-seasonal variability of supraglacial lakes during summer 2014. We also give coefficients for estimating supraglacial lake depth using a similar method with other multispectral sensors.
format Article in Journal/Newspaper
author A. Pope
T. A. Scambos
M. Moussavi
M. Tedesco
M. Willis
D. Shean
S. Grigsby
author_facet A. Pope
T. A. Scambos
M. Moussavi
M. Tedesco
M. Willis
D. Shean
S. Grigsby
author_sort A. Pope
title Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods
title_short Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods
title_full Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods
title_fullStr Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods
title_full_unstemmed Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods
title_sort estimating supraglacial lake depth in west greenland using landsat 8 and comparison with other multispectral methods
publisher Copernicus Publications
publishDate 2016
url https://doi.org/10.5194/tc-10-15-2016
http://www.the-cryosphere.net/10/15/2016/tc-10-15-2016.pdf
https://doaj.org/article/2801800759ef48149e75ca6e04d40487
long_lat ENVELOPE(-49.917,-49.917,69.167,69.167)
ENVELOPE(-46.037,-46.037,60.719,60.719)
geographic Greenland
Jakobshavn Isbræ
Kujalleq
geographic_facet Greenland
Jakobshavn Isbræ
Kujalleq
genre Greenland
Jakobshavn
Jakobshavn isbræ
Kujalleq
Sermeq Kujalleq
The Cryosphere
genre_facet Greenland
Jakobshavn
Jakobshavn isbræ
Kujalleq
Sermeq Kujalleq
The Cryosphere
op_source The Cryosphere, Vol 10, Iss 1, Pp 15-27 (2016)
op_relation 1994-0416
1994-0424
doi:10.5194/tc-10-15-2016
http://www.the-cryosphere.net/10/15/2016/tc-10-15-2016.pdf
https://doaj.org/article/2801800759ef48149e75ca6e04d40487
op_rights undefined
op_doi https://doi.org/10.5194/tc-10-15-2016
container_title The Cryosphere
container_volume 10
container_issue 1
container_start_page 15
op_container_end_page 27
_version_ 1766017624818319360