Indicator mineral exploration methodologies for VMS deposits using geochemistry and physical characteristics of magnetite

To evaluate the potential of magnetite as an indicator mineral for Volcanogenic Massive Sulfide (VMS) deposits, trace element compositions and physical characteristics (morphology, grain size, and surface textures) of magnetite from various VMS settings were investigated. Physical characteristics an...

Full description

Bibliographic Details
Main Author: Makvandi, Sheida
Other Authors: Beaudoin, Georges
Format: Thesis
Language:English
Published: Université Laval 2015
Subjects:
geo
Online Access:https://hdl.handle.net/20.500.11794/26566
Description
Summary:To evaluate the potential of magnetite as an indicator mineral for Volcanogenic Massive Sulfide (VMS) deposits, trace element compositions and physical characteristics (morphology, grain size, and surface textures) of magnetite from various VMS settings were investigated. Physical characteristics and mineral associations of magnetite from the Izok Lake deposit (Nunavut, Canada), its host bedrocks, and till covering the nearby area were studied using optical microscopy, Scanning Electron Microscopy (SEM), and Mineral Liberation Analysis (MLA). The results distinguish magmatic, metamorphic and supergene magnetite in the VMS setting, and indicate that 1) the grain-size distribution of magnetite and its textural relationships with mineral associations fingerprint the host bedrocks, 2) the angularity of magnetite in till is indicative of the original shape of the mineral, and 3) the surface textures of detrital magnetite are diagnostic of processes affecting grains during erosion, transport, and after deposition in glacial sediments. Variation in magnetite composition from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits and their host rocks were studied using SEM, Electron Probe Micro-Analyzer (EPMA), and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). The data were transformed for censored values using the R-package robCompositions. Transformed data were converted using centered log-ratio to overcome the closure effect, and then were investigated by Principal Component Analysis (PCA) to discriminate different rock/deposit samples based on Si, Ca, Zr, Al, Ga, Mn, Mg, Ti, Zn, Co, Ni and Cr contents of magnetite. The data from sixteen VMS deposits from four subtypes (mafic, bimodal-mafic, bimodal-felsic, and felsic-siliciclastic), and three VMS-associated Banded Iron Formations (BIF) were also investigated by Partial Least Squares Discriminant Analysis (PLS-DA). PLS-DA to distinguish different compositions of magnetite based on Si, Ca, Al, Mn, Mg, Ti, Zn, Co ...