Design and Development of an Acoustic Calibrator for Deep-Sea Neutrino Telescopes and First Search for Secluded Dark Matter with ANTARES

[EN] Neutrino astronomy is a booming field in astroparticle physics. Due to the particular characteristics of neutrinos, these particles offer great advantages as probes for the study of the far and high-energy Universe. It is extensively accepted by the scientific community that a multi-messenger a...

Full description

Bibliographic Details
Main Author: Adrián Martínez, Silvia
Other Authors: Ardid Ramírez, Miguel, Bou Cabo, Manuel, Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Format: Thesis
Language:English
Published: Universitat Politècnica de València 2015
Subjects:
geo
Online Access:https://doi.org/10.4995/Thesis/10251/48877
http://hdl.handle.net/10251/48877
Description
Summary:[EN] Neutrino astronomy is a booming field in astroparticle physics. Due to the particular characteristics of neutrinos, these particles offer great advantages as probes for the study of the far and high-energy Universe. It is extensively accepted by the scientific community that a multi-messenger approach with the combination of information provided by neutrinos, photons and charged particles (cosmic rays) is possible to obtain a more complete image of the fundamental astrophysics processes taking place in our Universe. Since neutrinos are neutral and very weak interacting particles they can reach the Earth from astrophysical sources without deflection by magnetic fields and almost without energy losses and absorption, contrarily to the rest of messengers. The other side of the coin of neutrino properties is that detection of neutrinos is very challenging and big highly instrumented detection volumes are needed. Natural media (deep sea, lakes or ice in the Antarctica) host this kind of experiments using the water (or ice) as target material where the neutrino interaction is produced. ANTARES is the first undersea neutrino telescope, located at 2475 m depth in the Mediterranean Sea. ANTARES is optimized for optical detection of the Cerenkov light induced by relativistic muons produced by high energy neutrino interactions near the detector. The charge, position and arrival time of the photons to the optical modules which compose the detector allows the muon track reconstruction, and thus, knowing the neutrino coming direction. Some information of the event energy is also derived. ANTARES is also hosting the AMADEUS experiment which is investigating the feasibility of the acoustic detection of Ultra-High Energy (UHE) neutrinos. The framework of this thesis is the ANTARES experiment. As commonly done in the thesis developed in this experiment (and in this field), the work has been divided in two different areas. On the one hand, a part more devoted to technological aspects related to the detector and, on the other ...