Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model

It is widely accepted that orbital variations are responsible for the generation of glacial cycles during the late Pleistocene. However, the relative contributions of the orbital forcing compared to CO2 variations and other feedback mechanisms causing the waxing and waning of ice sheets have not bee...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Choudhury, Dipayan, Timmermann, Axel, Schloesser, Fabian, Heinemann, Malte, Pollard, David
Format: Text
Language:English
Published: 2020
Subjects:
geo
Online Access:https://doi.org/10.5194/cp-16-2183-2020
https://cp.copernicus.org/articles/16/2183/2020/
id fttriple:oai:gotriple.eu:NKqtLAj7hnWsHTIct5vtU
record_format openpolar
spelling fttriple:oai:gotriple.eu:NKqtLAj7hnWsHTIct5vtU 2023-05-15T16:40:01+02:00 Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model Choudhury, Dipayan Timmermann, Axel Schloesser, Fabian Heinemann, Malte Pollard, David 2020-11-13 https://doi.org/10.5194/cp-16-2183-2020 https://cp.copernicus.org/articles/16/2183/2020/ en eng doi:10.5194/cp-16-2183-2020 10670/1.pndmea https://cp.copernicus.org/articles/16/2183/2020/ undefined Geographica Helvetica - geography eISSN: 1814-9332 geo envir Text https://vocabularies.coar-repositories.org/resource_types/c_18cf/ 2020 fttriple https://doi.org/10.5194/cp-16-2183-2020 2023-01-22T17:54:45Z It is widely accepted that orbital variations are responsible for the generation of glacial cycles during the late Pleistocene. However, the relative contributions of the orbital forcing compared to CO2 variations and other feedback mechanisms causing the waxing and waning of ice sheets have not been fully understood. Testing theories of ice ages beyond statistical inferences, requires numerical modeling experiments that capture key features of glacial transitions. Here, we focus on the glacial buildup from Marine Isotope Stage (MIS) 7 to 6 covering the period from 240 to 170 ka (ka: thousand years before present). This transition from interglacial to glacial conditions includes one of the fastest Pleistocene glaciation–deglaciation events, which occurred during MIS 7e–7d–7c (236–218 ka). Using a newly developed three-dimensional coupled atmosphere–ocean–vegetation–ice sheet model (LOVECLIP), we simulate the transient evolution of Northern Hemisphere and Southern Hemisphere ice sheets during the MIS 7–6 period in response to orbital and greenhouse gas forcing. For a range of model parameters, the simulations capture the evolution of global ice volume well within the range of reconstructions. Over the MIS 7–6 period, it is demonstrated that glacial inceptions are more sensitive to orbital variations, whereas terminations from deep glacial conditions need both orbital and greenhouse gas forcings to work in unison. For some parameter values, the coupled model also exhibits a critical North American ice sheet configuration, beyond which a stationary-wave–ice-sheet topography feedback can trigger an unabated and unrealistic ice sheet growth. The strong parameter sensitivity found in this study originates from the fact that delicate mass imbalances, as well as errors, are integrated during a transient simulation for thousands of years. This poses a general challenge for transient coupled climate–ice sheet modeling, with such coupled paleo-simulations providing opportunities to constrain such parameters. Text Ice Sheet Unknown Climate of the Past 16 6 2183 2201
institution Open Polar
collection Unknown
op_collection_id fttriple
language English
topic geo
envir
spellingShingle geo
envir
Choudhury, Dipayan
Timmermann, Axel
Schloesser, Fabian
Heinemann, Malte
Pollard, David
Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
topic_facet geo
envir
description It is widely accepted that orbital variations are responsible for the generation of glacial cycles during the late Pleistocene. However, the relative contributions of the orbital forcing compared to CO2 variations and other feedback mechanisms causing the waxing and waning of ice sheets have not been fully understood. Testing theories of ice ages beyond statistical inferences, requires numerical modeling experiments that capture key features of glacial transitions. Here, we focus on the glacial buildup from Marine Isotope Stage (MIS) 7 to 6 covering the period from 240 to 170 ka (ka: thousand years before present). This transition from interglacial to glacial conditions includes one of the fastest Pleistocene glaciation–deglaciation events, which occurred during MIS 7e–7d–7c (236–218 ka). Using a newly developed three-dimensional coupled atmosphere–ocean–vegetation–ice sheet model (LOVECLIP), we simulate the transient evolution of Northern Hemisphere and Southern Hemisphere ice sheets during the MIS 7–6 period in response to orbital and greenhouse gas forcing. For a range of model parameters, the simulations capture the evolution of global ice volume well within the range of reconstructions. Over the MIS 7–6 period, it is demonstrated that glacial inceptions are more sensitive to orbital variations, whereas terminations from deep glacial conditions need both orbital and greenhouse gas forcings to work in unison. For some parameter values, the coupled model also exhibits a critical North American ice sheet configuration, beyond which a stationary-wave–ice-sheet topography feedback can trigger an unabated and unrealistic ice sheet growth. The strong parameter sensitivity found in this study originates from the fact that delicate mass imbalances, as well as errors, are integrated during a transient simulation for thousands of years. This poses a general challenge for transient coupled climate–ice sheet modeling, with such coupled paleo-simulations providing opportunities to constrain such parameters.
format Text
author Choudhury, Dipayan
Timmermann, Axel
Schloesser, Fabian
Heinemann, Malte
Pollard, David
author_facet Choudhury, Dipayan
Timmermann, Axel
Schloesser, Fabian
Heinemann, Malte
Pollard, David
author_sort Choudhury, Dipayan
title Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
title_short Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
title_full Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
title_fullStr Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
title_full_unstemmed Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
title_sort simulating marine isotope stage 7 with a coupled climate–ice sheet model
publishDate 2020
url https://doi.org/10.5194/cp-16-2183-2020
https://cp.copernicus.org/articles/16/2183/2020/
genre Ice Sheet
genre_facet Ice Sheet
op_source Geographica Helvetica - geography
eISSN: 1814-9332
op_relation doi:10.5194/cp-16-2183-2020
10670/1.pndmea
https://cp.copernicus.org/articles/16/2183/2020/
op_rights undefined
op_doi https://doi.org/10.5194/cp-16-2183-2020
container_title Climate of the Past
container_volume 16
container_issue 6
container_start_page 2183
op_container_end_page 2201
_version_ 1766030375851655168