Summary: | Graduate Accelerated warming of high latitude systems of the northern hemisphere is expected to cause significant changes to the hydro-ecology of Arctic lakes. To record comprehensive and meaningful baseline hydrological, limnological, and ecological conditions to which future change can be compared, all available environmental information generated on Noell Lake, NWT was compiled and synthesized. Data included: physical and geographical characteristics (bathymetric and drainage basin attributes); general regional climatology; water quality (nutrients, major anions/cations, dissolved oxygen, dissolved organic carbon); biological composition (fish community, macrophyte, phytoplankton, epiphyton and epipelon surveys) and seasonal patterns in primary productivity (as measured by chlorophyll-a (Chl-a)). A field-monitoring study was conducted from September 2010 to July 2013 assessing the application, reliability, and quality control/quality assurance of a newly developed automated buoy-based Arctic Lake Monitoring System (ALMS). The ALMS continuously measured a range of lake limnological and water quality parameters under both open-water and under-ice conditions. Overall, the ALMS provided a usable, uninterrupted record of changes in measured environmental, hydrological, and limnological parameters in both the epilimnion and hypolimnion. Noell Lake was determined to be spatially homogeneous with respect to the limnological measurements taken and, thus, the data recorded by the instrument arrays were determined to be representative of the lake as a whole. In addition to the measurements made by environmental sensors mounted on the buoy and mooring components, an augmentary array of in-situ sampling campaigns and controlled experiments were conducted to produce a continuous and comprehensive description of daily and seasonal changes to the hydrological and limnological conditions of Noell Lake. The continuous data series confirmed that Noell Lake is dimictic, with mixing events occurring in August and June, and ...
|