id fttriple:oai:gotriple.eu:50|dedup_wf_001::ced68359738e196514713f79018cd0d5
record_format openpolar
spelling fttriple:oai:gotriple.eu:50|dedup_wf_001::ced68359738e196514713f79018cd0d5 2023-05-15T16:02:45+02:00 Data from: Forecasting changes in population genetic structure of alpine plants in response to global warming Jay, Flora Manel, Stéphanie Alvarez, Nadir Durand, Eric Y. Thuiller, Wilfried Holderegger, Rolf Taberlet, Pierre François, Olivier 2012-01-01 https://doi.org/10.5061/dryad.777jk760 undefined unknown http://dx.doi.org/10.5061/dryad.777jk760 https://dx.doi.org/10.5061/dryad.777jk760 lic_creative-commons oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:82220 oai:easy.dans.knaw.nl:easy-dataset:82220 10.5061/dryad.777jk760 10|eurocrisdris::fe4903425d9040f680d8610d9079ea14 10|re3data_____::84e123776089ce3c7a33db98d9cd15a8 10|openaire____::9e3be59865b2c1c335d32dae2fe7b254 re3data_____::r3d100000044 10|re3data_____::94816e6421eeb072e7742ce6a9decc5f 10|openaire____::081b82f96300b6a6e3d282bad31cb6e2 10|opendoar____::8b6dd7db9af49e67306feb59a8bdc52c Life sciences medicine and health care Adaptation Climate Change Ecological Genetics Population Genetics - Empirical Population Genetics - Theoretical Lanscape Genetics European Alps Holocene Androsace obtusifolia All Arabis alpina L Campanula barbata L Cerastium uniflorum Clairv Dryas octopetala L Gentiana nivalis L Geum montanum L Geum reptans L Gypsophila repens L Hedysarum hedysaroides (L.) Schinz & Thell. s.l Hypochaeris uniflora Vill Juncus trifidus L Ligusticum mutellinoides (Cr.) Vill Loiseleuria procumbens (L.) Desv Luzula alpinopilosa (Chaix) Breistr Phyteuma hemisphaericum L Rhododendron ferrugineum L Saxifraga stellaris L Sesleria caerulea (L.) Ard Trifolium alpinum L Hedysarum hedysaroides (L.) Schinz &amp Thell. s.l envir geo Dataset https://vocabularies.coar-repositories.org/resource_types/c_ddb1/ 2012 fttriple https://doi.org/10.5061/dryad.777jk760 2023-01-22T16:52:58Z Species range shifts in response to climate and land use change are commonly forecasted with species distribution models based on species occurrence or abundance data. Although appealing, these models ignore the genetic structure of species, and the fact that different populations might respond in different ways due to adaptation to their environment. Here, we introduced ancestry distribution models, i.e., statistical models of the spatial distribution of ancestry proportions, for forecasting intra-specific changes based on genetic admixture instead of species occurrence data. Using multi-locus genotypes and extensive geographic coverage of distribution data across the European Alps, we applied this approach to 20 alpine plant species considering a global increase in temperature from 0.25°C to 4°C. We forecasted the magnitudes of displacement of contact zones between plant populations potentially adapted to warmer environments and other populations. While a global trend of movement in a northeast direction was predicted, the magnitude of displacement was species-specific. For a temperature increase of 2°C, contact zones were predicted to move by 92 km on average (minimum of 5 km, maximum of 212 km), and by 188 km for an increase of 4°C (minimum of 11 km, maximum of 393 km). Intra-specific turnover – measuring the extent of change in global population genetic structure – was generally found to be moderate for 2°C of temperature warming. For 4°C of warming, however, the models indicated substantial intra-specific turnover for ten species. These results illustrate that, in spite of unavoidable simplifications, ancestry distribution models open new perspectives to forecast population genetic changes within species, and complement more traditional distribution-based approaches. DataMarker data, geographic, topographic and climatic information for 20 alpine plant species Dataset Dryas octopetala Unknown
institution Open Polar
collection Unknown
op_collection_id fttriple
language unknown
topic Life sciences
medicine and health care
Adaptation
Climate Change
Ecological Genetics
Population Genetics - Empirical
Population Genetics - Theoretical
Lanscape Genetics
European Alps
Holocene
Androsace obtusifolia All
Arabis alpina L
Campanula barbata L
Cerastium uniflorum Clairv
Dryas octopetala L
Gentiana nivalis L
Geum montanum L
Geum reptans L
Gypsophila repens L
Hedysarum hedysaroides (L.) Schinz & Thell. s.l
Hypochaeris uniflora Vill
Juncus trifidus L
Ligusticum mutellinoides (Cr.) Vill
Loiseleuria procumbens (L.) Desv
Luzula alpinopilosa (Chaix) Breistr
Phyteuma hemisphaericum L
Rhododendron ferrugineum L
Saxifraga stellaris L
Sesleria caerulea (L.) Ard
Trifolium alpinum L
Hedysarum hedysaroides (L.) Schinz &amp
Thell. s.l
envir
geo
spellingShingle Life sciences
medicine and health care
Adaptation
Climate Change
Ecological Genetics
Population Genetics - Empirical
Population Genetics - Theoretical
Lanscape Genetics
European Alps
Holocene
Androsace obtusifolia All
Arabis alpina L
Campanula barbata L
Cerastium uniflorum Clairv
Dryas octopetala L
Gentiana nivalis L
Geum montanum L
Geum reptans L
Gypsophila repens L
Hedysarum hedysaroides (L.) Schinz & Thell. s.l
Hypochaeris uniflora Vill
Juncus trifidus L
Ligusticum mutellinoides (Cr.) Vill
Loiseleuria procumbens (L.) Desv
Luzula alpinopilosa (Chaix) Breistr
Phyteuma hemisphaericum L
Rhododendron ferrugineum L
Saxifraga stellaris L
Sesleria caerulea (L.) Ard
Trifolium alpinum L
Hedysarum hedysaroides (L.) Schinz &amp
Thell. s.l
envir
geo
Jay, Flora
Manel, Stéphanie
Alvarez, Nadir
Durand, Eric Y.
Thuiller, Wilfried
Holderegger, Rolf
Taberlet, Pierre
François, Olivier
Data from: Forecasting changes in population genetic structure of alpine plants in response to global warming
topic_facet Life sciences
medicine and health care
Adaptation
Climate Change
Ecological Genetics
Population Genetics - Empirical
Population Genetics - Theoretical
Lanscape Genetics
European Alps
Holocene
Androsace obtusifolia All
Arabis alpina L
Campanula barbata L
Cerastium uniflorum Clairv
Dryas octopetala L
Gentiana nivalis L
Geum montanum L
Geum reptans L
Gypsophila repens L
Hedysarum hedysaroides (L.) Schinz & Thell. s.l
Hypochaeris uniflora Vill
Juncus trifidus L
Ligusticum mutellinoides (Cr.) Vill
Loiseleuria procumbens (L.) Desv
Luzula alpinopilosa (Chaix) Breistr
Phyteuma hemisphaericum L
Rhododendron ferrugineum L
Saxifraga stellaris L
Sesleria caerulea (L.) Ard
Trifolium alpinum L
Hedysarum hedysaroides (L.) Schinz &amp
Thell. s.l
envir
geo
description Species range shifts in response to climate and land use change are commonly forecasted with species distribution models based on species occurrence or abundance data. Although appealing, these models ignore the genetic structure of species, and the fact that different populations might respond in different ways due to adaptation to their environment. Here, we introduced ancestry distribution models, i.e., statistical models of the spatial distribution of ancestry proportions, for forecasting intra-specific changes based on genetic admixture instead of species occurrence data. Using multi-locus genotypes and extensive geographic coverage of distribution data across the European Alps, we applied this approach to 20 alpine plant species considering a global increase in temperature from 0.25°C to 4°C. We forecasted the magnitudes of displacement of contact zones between plant populations potentially adapted to warmer environments and other populations. While a global trend of movement in a northeast direction was predicted, the magnitude of displacement was species-specific. For a temperature increase of 2°C, contact zones were predicted to move by 92 km on average (minimum of 5 km, maximum of 212 km), and by 188 km for an increase of 4°C (minimum of 11 km, maximum of 393 km). Intra-specific turnover – measuring the extent of change in global population genetic structure – was generally found to be moderate for 2°C of temperature warming. For 4°C of warming, however, the models indicated substantial intra-specific turnover for ten species. These results illustrate that, in spite of unavoidable simplifications, ancestry distribution models open new perspectives to forecast population genetic changes within species, and complement more traditional distribution-based approaches. DataMarker data, geographic, topographic and climatic information for 20 alpine plant species
format Dataset
author Jay, Flora
Manel, Stéphanie
Alvarez, Nadir
Durand, Eric Y.
Thuiller, Wilfried
Holderegger, Rolf
Taberlet, Pierre
François, Olivier
author_facet Jay, Flora
Manel, Stéphanie
Alvarez, Nadir
Durand, Eric Y.
Thuiller, Wilfried
Holderegger, Rolf
Taberlet, Pierre
François, Olivier
author_sort Jay, Flora
title Data from: Forecasting changes in population genetic structure of alpine plants in response to global warming
title_short Data from: Forecasting changes in population genetic structure of alpine plants in response to global warming
title_full Data from: Forecasting changes in population genetic structure of alpine plants in response to global warming
title_fullStr Data from: Forecasting changes in population genetic structure of alpine plants in response to global warming
title_full_unstemmed Data from: Forecasting changes in population genetic structure of alpine plants in response to global warming
title_sort data from: forecasting changes in population genetic structure of alpine plants in response to global warming
publishDate 2012
url https://doi.org/10.5061/dryad.777jk760
genre Dryas octopetala
genre_facet Dryas octopetala
op_source oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:82220
oai:easy.dans.knaw.nl:easy-dataset:82220
10.5061/dryad.777jk760
10|eurocrisdris::fe4903425d9040f680d8610d9079ea14
10|re3data_____::84e123776089ce3c7a33db98d9cd15a8
10|openaire____::9e3be59865b2c1c335d32dae2fe7b254
re3data_____::r3d100000044
10|re3data_____::94816e6421eeb072e7742ce6a9decc5f
10|openaire____::081b82f96300b6a6e3d282bad31cb6e2
10|opendoar____::8b6dd7db9af49e67306feb59a8bdc52c
op_relation http://dx.doi.org/10.5061/dryad.777jk760
https://dx.doi.org/10.5061/dryad.777jk760
op_rights lic_creative-commons
op_doi https://doi.org/10.5061/dryad.777jk760
_version_ 1766398439694794752