Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions

Species distribution modelling (SDM) is a tool that utilizes the relationship between a species and its environment in known (sampled) locations to predict the species’ distribution in unsampled areas. Environmental data are typically collected at different spatial and temporal scales and often requ...

Full description

Bibliographic Details
Main Author: Lirette, Camille
Other Authors: Beazley, Lindsay, Guijarro-Sabaniel, Javier, Wang, Zeliang, Kenchington, Ellen, Lindsay Beazley
Format: Dataset
Language:unknown
Published: Mendeley 2019
Subjects:
geo
Online Access:https://doi.org/10.17632/ZMWYJS222S.1
https://doi.org/10.17632/ZMWYJS222S.2
https://doi.org/10.17632/zmwyjs222s
id fttriple:oai:gotriple.eu:50|dedup_wf_001::88c164b808e6a84af32eb905565cf5d9
record_format openpolar
spelling fttriple:oai:gotriple.eu:50|dedup_wf_001::88c164b808e6a84af32eb905565cf5d9 2023-05-15T14:36:27+02:00 Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions Lirette, Camille Beazley, Lindsay Guijarro-Sabaniel, Javier Wang, Zeliang Kenchington, Ellen Lindsay Beazley 2019-02-14 https://doi.org/10.17632/ZMWYJS222S.1 https://doi.org/10.17632/ZMWYJS222S.2 https://doi.org/10.17632/zmwyjs222s undefined unknown Mendeley http://dx.doi.org/10.17632/ZMWYJS222S.1 http://dx.doi.org/10.17632/ZMWYJS222S.2 https://dx.doi.org/10.17632/zmwyjs222s.2 http://dx.doi.org/10.17632/zmwyjs222s https://dx.doi.org/10.17632/zmwyjs222s https://dx.doi.org/10.17632/zmwyjs222s.1 lic_creative-commons oai:oai.datacite.org:18185256 doi:10.17632/zmwyjs222s.2 10.17632/zmwyjs222s.2 10.17632/zmwyjs222s doi:10.17632/zmwyjs222s oai:easy.dans.knaw.nl:easy-dataset:117684 oai:oai.datacite.org:18185255 oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:117684 10.17632/zmwyjs222s.1 oai:easy.dans.knaw.nl:easy-dataset:117549 oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:117549 doi:10.17632/zmwyjs222s.1 oai:oai.datacite.org:18203702 10|re3data_____::db814dc656a911b556dba42a331cebe9 10|openaire____::9e3be59865b2c1c335d32dae2fe7b254 10|re3data_____::84e123776089ce3c7a33db98d9cd15a8 10|eurocrisdris::fe4903425d9040f680d8610d9079ea14 Interpolation Arctic Ocean Benthic Ecology Modelling Interdisciplinary sciences envir geo Dataset https://vocabularies.coar-repositories.org/resource_types/c_ddb1/ 2019 fttriple https://doi.org/10.17632/ZMWYJS222S.1 https://doi.org/10.17632/ZMWYJS222S.2 https://doi.org/10.17632/zmwyjs222s.2 https://doi.org/10.17632/zmwyjs222s https://doi.org/10.17632/zmwyjs222s.1 2023-01-22T17:22:29Z Species distribution modelling (SDM) is a tool that utilizes the relationship between a species and its environment in known (sampled) locations to predict the species’ distribution in unsampled areas. Environmental data are typically collected at different spatial and temporal scales and often require spatial interpolation between data points to provide a continuous surface required by the modelling application. Here we provide detailed information on 111 environmental data layers collected over different spatial scales and temporal resolutions and interpolated using a geospatial method to provide continuous data surfaces for the Eastern Canadian Arctic and Sub-Arctic. Variables were obtained from a broad range of physical and biological data sources and spatially interpolated using ordinary kriging. For each environmental variable we show the distributional properties of the raw data prior to spatial interpolation, model performance indicators and assessment of model performance, and finally, maps of the prediction standard error and interpolation prediction surfaces. These layers have been archived in a common (raster) format at the Bedford Institute of Oceanography to facilitate future use. A subset of these variables has already been used in a conservation management application to identify deep-water coral and sponge Significant Benthic Areas in the Eastern Canadian Arctic. Dataset Arctic Arctic Ocean Unknown Arctic Arctic Ocean Bedford ENVELOPE(-67.150,-67.150,-66.467,-66.467)
institution Open Polar
collection Unknown
op_collection_id fttriple
language unknown
topic Interpolation
Arctic Ocean
Benthic Ecology
Modelling
Interdisciplinary sciences
envir
geo
spellingShingle Interpolation
Arctic Ocean
Benthic Ecology
Modelling
Interdisciplinary sciences
envir
geo
Lirette, Camille
Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions
topic_facet Interpolation
Arctic Ocean
Benthic Ecology
Modelling
Interdisciplinary sciences
envir
geo
description Species distribution modelling (SDM) is a tool that utilizes the relationship between a species and its environment in known (sampled) locations to predict the species’ distribution in unsampled areas. Environmental data are typically collected at different spatial and temporal scales and often require spatial interpolation between data points to provide a continuous surface required by the modelling application. Here we provide detailed information on 111 environmental data layers collected over different spatial scales and temporal resolutions and interpolated using a geospatial method to provide continuous data surfaces for the Eastern Canadian Arctic and Sub-Arctic. Variables were obtained from a broad range of physical and biological data sources and spatially interpolated using ordinary kriging. For each environmental variable we show the distributional properties of the raw data prior to spatial interpolation, model performance indicators and assessment of model performance, and finally, maps of the prediction standard error and interpolation prediction surfaces. These layers have been archived in a common (raster) format at the Bedford Institute of Oceanography to facilitate future use. A subset of these variables has already been used in a conservation management application to identify deep-water coral and sponge Significant Benthic Areas in the Eastern Canadian Arctic.
author2 Beazley, Lindsay
Guijarro-Sabaniel, Javier
Wang, Zeliang
Kenchington, Ellen
Lindsay Beazley
format Dataset
author Lirette, Camille
author_facet Lirette, Camille
author_sort Lirette, Camille
title Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions
title_short Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions
title_full Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions
title_fullStr Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions
title_full_unstemmed Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions
title_sort characteristics of environmental data layers for use in species distribution modelling in the eastern canadian arctic and sub-arctic regions
publisher Mendeley
publishDate 2019
url https://doi.org/10.17632/ZMWYJS222S.1
https://doi.org/10.17632/ZMWYJS222S.2
https://doi.org/10.17632/zmwyjs222s
long_lat ENVELOPE(-67.150,-67.150,-66.467,-66.467)
geographic Arctic
Arctic Ocean
Bedford
geographic_facet Arctic
Arctic Ocean
Bedford
genre Arctic
Arctic Ocean
genre_facet Arctic
Arctic Ocean
op_source oai:oai.datacite.org:18185256
doi:10.17632/zmwyjs222s.2
10.17632/zmwyjs222s.2
10.17632/zmwyjs222s
doi:10.17632/zmwyjs222s
oai:easy.dans.knaw.nl:easy-dataset:117684
oai:oai.datacite.org:18185255
oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:117684
10.17632/zmwyjs222s.1
oai:easy.dans.knaw.nl:easy-dataset:117549
oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:117549
doi:10.17632/zmwyjs222s.1
oai:oai.datacite.org:18203702
10|re3data_____::db814dc656a911b556dba42a331cebe9
10|openaire____::9e3be59865b2c1c335d32dae2fe7b254
10|re3data_____::84e123776089ce3c7a33db98d9cd15a8
10|eurocrisdris::fe4903425d9040f680d8610d9079ea14
op_relation http://dx.doi.org/10.17632/ZMWYJS222S.1
http://dx.doi.org/10.17632/ZMWYJS222S.2
https://dx.doi.org/10.17632/zmwyjs222s.2
http://dx.doi.org/10.17632/zmwyjs222s
https://dx.doi.org/10.17632/zmwyjs222s
https://dx.doi.org/10.17632/zmwyjs222s.1
op_rights lic_creative-commons
op_doi https://doi.org/10.17632/ZMWYJS222S.1
https://doi.org/10.17632/ZMWYJS222S.2
https://doi.org/10.17632/zmwyjs222s.2
https://doi.org/10.17632/zmwyjs222s
https://doi.org/10.17632/zmwyjs222s.1
_version_ 1766309060220551168