Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions
Species distribution modelling (SDM) is a tool that utilizes the relationship between a species and its environment in known (sampled) locations to predict the species’ distribution in unsampled areas. Environmental data are typically collected at different spatial and temporal scales and often requ...
Main Author: | |
---|---|
Other Authors: | , , , , |
Format: | Dataset |
Language: | unknown |
Published: |
Mendeley
2019
|
Subjects: | |
Online Access: | https://doi.org/10.17632/ZMWYJS222S.1 https://doi.org/10.17632/ZMWYJS222S.2 https://doi.org/10.17632/zmwyjs222s |
id |
fttriple:oai:gotriple.eu:50|dedup_wf_001::88c164b808e6a84af32eb905565cf5d9 |
---|---|
record_format |
openpolar |
spelling |
fttriple:oai:gotriple.eu:50|dedup_wf_001::88c164b808e6a84af32eb905565cf5d9 2023-05-15T14:36:27+02:00 Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions Lirette, Camille Beazley, Lindsay Guijarro-Sabaniel, Javier Wang, Zeliang Kenchington, Ellen Lindsay Beazley 2019-02-14 https://doi.org/10.17632/ZMWYJS222S.1 https://doi.org/10.17632/ZMWYJS222S.2 https://doi.org/10.17632/zmwyjs222s undefined unknown Mendeley http://dx.doi.org/10.17632/ZMWYJS222S.1 http://dx.doi.org/10.17632/ZMWYJS222S.2 https://dx.doi.org/10.17632/zmwyjs222s.2 http://dx.doi.org/10.17632/zmwyjs222s https://dx.doi.org/10.17632/zmwyjs222s https://dx.doi.org/10.17632/zmwyjs222s.1 lic_creative-commons oai:oai.datacite.org:18185256 doi:10.17632/zmwyjs222s.2 10.17632/zmwyjs222s.2 10.17632/zmwyjs222s doi:10.17632/zmwyjs222s oai:easy.dans.knaw.nl:easy-dataset:117684 oai:oai.datacite.org:18185255 oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:117684 10.17632/zmwyjs222s.1 oai:easy.dans.knaw.nl:easy-dataset:117549 oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:117549 doi:10.17632/zmwyjs222s.1 oai:oai.datacite.org:18203702 10|re3data_____::db814dc656a911b556dba42a331cebe9 10|openaire____::9e3be59865b2c1c335d32dae2fe7b254 10|re3data_____::84e123776089ce3c7a33db98d9cd15a8 10|eurocrisdris::fe4903425d9040f680d8610d9079ea14 Interpolation Arctic Ocean Benthic Ecology Modelling Interdisciplinary sciences envir geo Dataset https://vocabularies.coar-repositories.org/resource_types/c_ddb1/ 2019 fttriple https://doi.org/10.17632/ZMWYJS222S.1 https://doi.org/10.17632/ZMWYJS222S.2 https://doi.org/10.17632/zmwyjs222s.2 https://doi.org/10.17632/zmwyjs222s https://doi.org/10.17632/zmwyjs222s.1 2023-01-22T17:22:29Z Species distribution modelling (SDM) is a tool that utilizes the relationship between a species and its environment in known (sampled) locations to predict the species’ distribution in unsampled areas. Environmental data are typically collected at different spatial and temporal scales and often require spatial interpolation between data points to provide a continuous surface required by the modelling application. Here we provide detailed information on 111 environmental data layers collected over different spatial scales and temporal resolutions and interpolated using a geospatial method to provide continuous data surfaces for the Eastern Canadian Arctic and Sub-Arctic. Variables were obtained from a broad range of physical and biological data sources and spatially interpolated using ordinary kriging. For each environmental variable we show the distributional properties of the raw data prior to spatial interpolation, model performance indicators and assessment of model performance, and finally, maps of the prediction standard error and interpolation prediction surfaces. These layers have been archived in a common (raster) format at the Bedford Institute of Oceanography to facilitate future use. A subset of these variables has already been used in a conservation management application to identify deep-water coral and sponge Significant Benthic Areas in the Eastern Canadian Arctic. Dataset Arctic Arctic Ocean Unknown Arctic Arctic Ocean Bedford ENVELOPE(-67.150,-67.150,-66.467,-66.467) |
institution |
Open Polar |
collection |
Unknown |
op_collection_id |
fttriple |
language |
unknown |
topic |
Interpolation Arctic Ocean Benthic Ecology Modelling Interdisciplinary sciences envir geo |
spellingShingle |
Interpolation Arctic Ocean Benthic Ecology Modelling Interdisciplinary sciences envir geo Lirette, Camille Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions |
topic_facet |
Interpolation Arctic Ocean Benthic Ecology Modelling Interdisciplinary sciences envir geo |
description |
Species distribution modelling (SDM) is a tool that utilizes the relationship between a species and its environment in known (sampled) locations to predict the species’ distribution in unsampled areas. Environmental data are typically collected at different spatial and temporal scales and often require spatial interpolation between data points to provide a continuous surface required by the modelling application. Here we provide detailed information on 111 environmental data layers collected over different spatial scales and temporal resolutions and interpolated using a geospatial method to provide continuous data surfaces for the Eastern Canadian Arctic and Sub-Arctic. Variables were obtained from a broad range of physical and biological data sources and spatially interpolated using ordinary kriging. For each environmental variable we show the distributional properties of the raw data prior to spatial interpolation, model performance indicators and assessment of model performance, and finally, maps of the prediction standard error and interpolation prediction surfaces. These layers have been archived in a common (raster) format at the Bedford Institute of Oceanography to facilitate future use. A subset of these variables has already been used in a conservation management application to identify deep-water coral and sponge Significant Benthic Areas in the Eastern Canadian Arctic. |
author2 |
Beazley, Lindsay Guijarro-Sabaniel, Javier Wang, Zeliang Kenchington, Ellen Lindsay Beazley |
format |
Dataset |
author |
Lirette, Camille |
author_facet |
Lirette, Camille |
author_sort |
Lirette, Camille |
title |
Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions |
title_short |
Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions |
title_full |
Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions |
title_fullStr |
Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions |
title_full_unstemmed |
Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions |
title_sort |
characteristics of environmental data layers for use in species distribution modelling in the eastern canadian arctic and sub-arctic regions |
publisher |
Mendeley |
publishDate |
2019 |
url |
https://doi.org/10.17632/ZMWYJS222S.1 https://doi.org/10.17632/ZMWYJS222S.2 https://doi.org/10.17632/zmwyjs222s |
long_lat |
ENVELOPE(-67.150,-67.150,-66.467,-66.467) |
geographic |
Arctic Arctic Ocean Bedford |
geographic_facet |
Arctic Arctic Ocean Bedford |
genre |
Arctic Arctic Ocean |
genre_facet |
Arctic Arctic Ocean |
op_source |
oai:oai.datacite.org:18185256 doi:10.17632/zmwyjs222s.2 10.17632/zmwyjs222s.2 10.17632/zmwyjs222s doi:10.17632/zmwyjs222s oai:easy.dans.knaw.nl:easy-dataset:117684 oai:oai.datacite.org:18185255 oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:117684 10.17632/zmwyjs222s.1 oai:easy.dans.knaw.nl:easy-dataset:117549 oai:services.nod.dans.knaw.nl:Products/dans:oai:easy.dans.knaw.nl:easy-dataset:117549 doi:10.17632/zmwyjs222s.1 oai:oai.datacite.org:18203702 10|re3data_____::db814dc656a911b556dba42a331cebe9 10|openaire____::9e3be59865b2c1c335d32dae2fe7b254 10|re3data_____::84e123776089ce3c7a33db98d9cd15a8 10|eurocrisdris::fe4903425d9040f680d8610d9079ea14 |
op_relation |
http://dx.doi.org/10.17632/ZMWYJS222S.1 http://dx.doi.org/10.17632/ZMWYJS222S.2 https://dx.doi.org/10.17632/zmwyjs222s.2 http://dx.doi.org/10.17632/zmwyjs222s https://dx.doi.org/10.17632/zmwyjs222s https://dx.doi.org/10.17632/zmwyjs222s.1 |
op_rights |
lic_creative-commons |
op_doi |
https://doi.org/10.17632/ZMWYJS222S.1 https://doi.org/10.17632/ZMWYJS222S.2 https://doi.org/10.17632/zmwyjs222s.2 https://doi.org/10.17632/zmwyjs222s https://doi.org/10.17632/zmwyjs222s.1 |
_version_ |
1766309060220551168 |