Molecular Catalysts for CO2 Fixation/Reduction

Society is currently confronted with the continuing environmental problems of global warming and ocean acidification related to increasing CO2 emission from anthropogenic sources. These environmental issues are also connected to the inevitable energy supply shortage due to the eventual depletion of...

Full description

Bibliographic Details
Other Authors: Ishida, Hitoshi, Machan, Charles, Robert, Marc, Iwasawa, Nobuharu
Format: Book
Language:unknown
Published: 2020
Subjects:
geo
Online Access:https://directory.doabooks.org/handle/20.500.12854/73764
https://hdl.handle.net/20.500.12854/73764
id fttriple:oai:gotriple.eu:20.500.12854/73764
record_format openpolar
spelling fttriple:oai:gotriple.eu:20.500.12854/73764 2023-05-15T17:51:47+02:00 Molecular Catalysts for CO2 Fixation/Reduction Ishida, Hitoshi Machan, Charles Robert, Marc Iwasawa, Nobuharu 2020-01-01 https://directory.doabooks.org/handle/20.500.12854/73764 https://hdl.handle.net/20.500.12854/73764 other unknown 20.500.12854/73764 https://directory.doabooks.org/handle/20.500.12854/73764 undefined Directory of Open Access Books envir geo Book https://vocabularies.coar-repositories.org/resource_types/c_2f33/ 2020 fttriple https://doi.org/20.500.12854/73764 2023-01-22T18:27:45Z Society is currently confronted with the continuing environmental problems of global warming and ocean acidification related to increasing CO2 emission from anthropogenic sources. These environmental issues are also connected to the inevitable energy supply shortage due to the eventual depletion of fossil fuel sources. As a solution, the technology of recycling CO2 into useful organic materials continues to attract attention. This methodology can be categorized into two main parts: CO2 fixation and CO2 reduction. For both reactions, molecular catalysts based on transition metal coordination complexes and organometallic compounds have been developed and examined. Molecular catalysts can be characterized and iteratively improved at the molecular level through spectroscopic experiments and the isolation of intermediate species, which is particularly advantageous in comparison to heterogeneous catalysts. The fixation of CO2 into organic compounds to form a carbon-carbon bond by using organometallic catalysts is a direct methodology for CO2 utilization and represents the potential reversible storage of electrochemical energy in chemical bonds. The resultant carboxylic acid-containing compounds formed as the initial products can be subsequently converted into other organic materials, even products with new chiral centers. The reduction of CO2 by two electrons (often with a proton donor as a co-substrate) yields carbon monoxide (CO) and formic acid (HCOOH), which can be further converted to useful chemicals. Reduction reactions involving more than two electrons and two protons can produce formaldehyde (HCHO), methanol (CH3OH), and methane (CH4), which are also desirable as chemicals and fuels. For molecular electrocatalysts, more negative potentials than the equilibrium ones for CO2 reduction are generally required; the difficulty is that the equilibrium potentials for CO2 reduction are generally negative of the equilibrium potential for proton reduction to produce H2, representing a competing thermodynamically favored ... Book Ocean acidification Unknown
institution Open Polar
collection Unknown
op_collection_id fttriple
language unknown
topic envir
geo
spellingShingle envir
geo
Molecular Catalysts for CO2 Fixation/Reduction
topic_facet envir
geo
description Society is currently confronted with the continuing environmental problems of global warming and ocean acidification related to increasing CO2 emission from anthropogenic sources. These environmental issues are also connected to the inevitable energy supply shortage due to the eventual depletion of fossil fuel sources. As a solution, the technology of recycling CO2 into useful organic materials continues to attract attention. This methodology can be categorized into two main parts: CO2 fixation and CO2 reduction. For both reactions, molecular catalysts based on transition metal coordination complexes and organometallic compounds have been developed and examined. Molecular catalysts can be characterized and iteratively improved at the molecular level through spectroscopic experiments and the isolation of intermediate species, which is particularly advantageous in comparison to heterogeneous catalysts. The fixation of CO2 into organic compounds to form a carbon-carbon bond by using organometallic catalysts is a direct methodology for CO2 utilization and represents the potential reversible storage of electrochemical energy in chemical bonds. The resultant carboxylic acid-containing compounds formed as the initial products can be subsequently converted into other organic materials, even products with new chiral centers. The reduction of CO2 by two electrons (often with a proton donor as a co-substrate) yields carbon monoxide (CO) and formic acid (HCOOH), which can be further converted to useful chemicals. Reduction reactions involving more than two electrons and two protons can produce formaldehyde (HCHO), methanol (CH3OH), and methane (CH4), which are also desirable as chemicals and fuels. For molecular electrocatalysts, more negative potentials than the equilibrium ones for CO2 reduction are generally required; the difficulty is that the equilibrium potentials for CO2 reduction are generally negative of the equilibrium potential for proton reduction to produce H2, representing a competing thermodynamically favored ...
author2 Ishida, Hitoshi
Machan, Charles
Robert, Marc
Iwasawa, Nobuharu
format Book
title Molecular Catalysts for CO2 Fixation/Reduction
title_short Molecular Catalysts for CO2 Fixation/Reduction
title_full Molecular Catalysts for CO2 Fixation/Reduction
title_fullStr Molecular Catalysts for CO2 Fixation/Reduction
title_full_unstemmed Molecular Catalysts for CO2 Fixation/Reduction
title_sort molecular catalysts for co2 fixation/reduction
publishDate 2020
url https://directory.doabooks.org/handle/20.500.12854/73764
https://hdl.handle.net/20.500.12854/73764
genre Ocean acidification
genre_facet Ocean acidification
op_source Directory of Open Access Books
op_relation 20.500.12854/73764
https://directory.doabooks.org/handle/20.500.12854/73764
op_rights undefined
op_doi https://doi.org/20.500.12854/73764
_version_ 1766159045077499904