Improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated?
International audience Radium-228 (228 Ra), an almost conservative trace isotope in the ocean, supplied from the continental shelves and removed by a known radioactive decay (T 1/2 = 5.75 years), can be used as a proxy to constrain shelf fluxes of other trace elements, such as nutrients, iron, or ra...
Published in: | Biogeosciences |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2017
|
Subjects: | |
Online Access: | https://doi.org/10.5194/bg-14-3171-2017 https://hal.archives-ouvertes.fr/hal-01833170/file/Le-Gland_etal_BG_2017.pdf https://hal.archives-ouvertes.fr/hal-01833170 |
id |
fttriple:oai:gotriple.eu:10670/1.x0ydp1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Unknown |
op_collection_id |
fttriple |
language |
English |
topic |
geo envir |
spellingShingle |
geo envir Le Gland, Guillaume Mémery, Laurent Aumont, Olivier Resplandy, Laure Improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated? |
topic_facet |
geo envir |
description |
International audience Radium-228 (228 Ra), an almost conservative trace isotope in the ocean, supplied from the continental shelves and removed by a known radioactive decay (T 1/2 = 5.75 years), can be used as a proxy to constrain shelf fluxes of other trace elements, such as nutrients, iron, or rare earth elements. In this study, we perform inverse modeling of a global 228 Ra dataset (including GEOSECS, TTO and GEO-TRACES programs, and, for the first time, data from the Arc-tic and around the Kerguelen Islands) to compute the total 228 Ra fluxes toward the ocean, using the ocean circulation obtained from the NEMO 3.6 model with a 2 • resolution. We optimized the inverse calculation (source regions, cost function) and find a global estimate of the 228 Ra fluxes of 8.01-8.49 × 10 23 atoms yr −1 , more precise and around 20 % lower than previous estimates. The largest fluxes are in the western North Atlantic, the western Pacific and the Indian Ocean, with roughly two-thirds in the Indo-Pacific Basin. An estimate in the Arctic Ocean is provided for the first time (0.43-0.50 × 10 23 atoms yr −1). Local misfits between model and data in the Arctic, the Gulf Stream and the Kuroshio regions could result from flaws of the ocean circulation in these regions (resolution, atmospheric forcing). As radium is enriched in groundwater, a large part of the 228 Ra shelf sources comes from submarine groundwater discharge (SGD), a major but poorly known pathway for terrestrial mineral elements , including nutrients, to the ocean. In contrast to the 228 Ra budget, the global estimate of SGD is rather uncon-strained, between 1.3 and 14.7 × 10 13 m 3 yr −1 , due to high uncertainties on the other sources of 228 Ra, especially diffusion from continental shelf sediments. Better precision on SGD cannot be reached by inverse modeling until a proper way to separate the contributions of SGD and diffusive release from sediments at a global scale is found. |
author2 |
Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) Institut Universitaire Européen de la Mer (IUEM) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS Paris) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU) Scripps Institution of Oceanography (SIO) University of California San Diego (UC San Diego) University of California-University of California ANR-10-LABX-0019,LabexMER,LabexMER Marine Excellence Research: a changing ocean(2010) |
format |
Article in Journal/Newspaper |
author |
Le Gland, Guillaume Mémery, Laurent Aumont, Olivier Resplandy, Laure |
author_facet |
Le Gland, Guillaume Mémery, Laurent Aumont, Olivier Resplandy, Laure |
author_sort |
Le Gland, Guillaume |
title |
Improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated? |
title_short |
Improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated? |
title_full |
Improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated? |
title_fullStr |
Improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated? |
title_full_unstemmed |
Improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated? |
title_sort |
improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated? |
publisher |
HAL CCSD |
publishDate |
2017 |
url |
https://doi.org/10.5194/bg-14-3171-2017 https://hal.archives-ouvertes.fr/hal-01833170/file/Le-Gland_etal_BG_2017.pdf https://hal.archives-ouvertes.fr/hal-01833170 |
geographic |
Arctic Arctic Ocean Indian Kerguelen Kerguelen Islands Pacific |
geographic_facet |
Arctic Arctic Ocean Indian Kerguelen Kerguelen Islands Pacific |
genre |
Arctic Arctic Ocean Kerguelen Islands North Atlantic |
genre_facet |
Arctic Arctic Ocean Kerguelen Islands North Atlantic |
op_source |
Hyper Article en Ligne - Sciences de l'Homme et de la Société ISSN: 1726-4170 EISSN: 1726-4189 Biogeosciences Biogeosciences, European Geosciences Union, 2017, 14 (13), pp.3171 - 3189. ⟨10.5194/bg-14-3171-2017⟩ |
op_relation |
hal-01833170 doi:10.5194/bg-14-3171-2017 IRD: fdi:010070324 10670/1.x0ydp1 https://hal.archives-ouvertes.fr/hal-01833170/file/Le-Gland_etal_BG_2017.pdf https://hal.archives-ouvertes.fr/hal-01833170 |
op_rights |
other |
op_doi |
https://doi.org/10.5194/bg-14-3171-2017 |
container_title |
Biogeosciences |
container_volume |
14 |
container_issue |
13 |
container_start_page |
3171 |
op_container_end_page |
3189 |
_version_ |
1766335579355611136 |
spelling |
fttriple:oai:gotriple.eu:10670/1.x0ydp1 2023-05-15T15:03:43+02:00 Improving the inverse modeling of a trace isotope: how precisely can radium-228 fluxes toward the ocean and submarine groundwater discharge be estimated? Le Gland, Guillaume Mémery, Laurent Aumont, Olivier Resplandy, Laure Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR) Institut Universitaire Européen de la Mer (IUEM) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS Paris) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU) Scripps Institution of Oceanography (SIO) University of California San Diego (UC San Diego) University of California-University of California ANR-10-LABX-0019,LabexMER,LabexMER Marine Excellence Research: a changing ocean(2010) 2017-07-04 https://doi.org/10.5194/bg-14-3171-2017 https://hal.archives-ouvertes.fr/hal-01833170/file/Le-Gland_etal_BG_2017.pdf https://hal.archives-ouvertes.fr/hal-01833170 en eng HAL CCSD European Geosciences Union hal-01833170 doi:10.5194/bg-14-3171-2017 IRD: fdi:010070324 10670/1.x0ydp1 https://hal.archives-ouvertes.fr/hal-01833170/file/Le-Gland_etal_BG_2017.pdf https://hal.archives-ouvertes.fr/hal-01833170 other Hyper Article en Ligne - Sciences de l'Homme et de la Société ISSN: 1726-4170 EISSN: 1726-4189 Biogeosciences Biogeosciences, European Geosciences Union, 2017, 14 (13), pp.3171 - 3189. ⟨10.5194/bg-14-3171-2017⟩ geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2017 fttriple https://doi.org/10.5194/bg-14-3171-2017 2023-01-22T18:14:21Z International audience Radium-228 (228 Ra), an almost conservative trace isotope in the ocean, supplied from the continental shelves and removed by a known radioactive decay (T 1/2 = 5.75 years), can be used as a proxy to constrain shelf fluxes of other trace elements, such as nutrients, iron, or rare earth elements. In this study, we perform inverse modeling of a global 228 Ra dataset (including GEOSECS, TTO and GEO-TRACES programs, and, for the first time, data from the Arc-tic and around the Kerguelen Islands) to compute the total 228 Ra fluxes toward the ocean, using the ocean circulation obtained from the NEMO 3.6 model with a 2 • resolution. We optimized the inverse calculation (source regions, cost function) and find a global estimate of the 228 Ra fluxes of 8.01-8.49 × 10 23 atoms yr −1 , more precise and around 20 % lower than previous estimates. The largest fluxes are in the western North Atlantic, the western Pacific and the Indian Ocean, with roughly two-thirds in the Indo-Pacific Basin. An estimate in the Arctic Ocean is provided for the first time (0.43-0.50 × 10 23 atoms yr −1). Local misfits between model and data in the Arctic, the Gulf Stream and the Kuroshio regions could result from flaws of the ocean circulation in these regions (resolution, atmospheric forcing). As radium is enriched in groundwater, a large part of the 228 Ra shelf sources comes from submarine groundwater discharge (SGD), a major but poorly known pathway for terrestrial mineral elements , including nutrients, to the ocean. In contrast to the 228 Ra budget, the global estimate of SGD is rather uncon-strained, between 1.3 and 14.7 × 10 13 m 3 yr −1 , due to high uncertainties on the other sources of 228 Ra, especially diffusion from continental shelf sediments. Better precision on SGD cannot be reached by inverse modeling until a proper way to separate the contributions of SGD and diffusive release from sediments at a global scale is found. Article in Journal/Newspaper Arctic Arctic Ocean Kerguelen Islands North Atlantic Unknown Arctic Arctic Ocean Indian Kerguelen Kerguelen Islands Pacific Biogeosciences 14 13 3171 3189 |