Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century.

International audience High alpine rock wall permafrost is extremely sensitive to climate change. Its degradation has a strong impact on landscape evolution and can trigger rockfalls constituting an increasing threat to socio-economical activities of highly frequented areas; quantitative understandi...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Magnin, Florence, Josnin, Jean-Yves, Ravanel, Ludovic, Pergaud, Julien, Pohl, Benjamin, Deline, Philip
Other Authors: Environnements, Dynamiques et Territoires de la Montagne (EDYTEM), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Biogéosciences UMR 6282 Dijon (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Work founded by the EU Interreg V-A France-Italy ALCOTRA 2014-2020 no. 342 PrévRisk Haute Montagne project., ANR-14-CE03-0006,VIP-Mont-Blanc,VItesses des Processus contrôlant les évolutions morphologiques et environnementales du massif du Mont Blanc(2014)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
geo
Ice
Online Access:https://doi.org/10.5194/tc-11-1813-2017
https://hal.archives-ouvertes.fr/hal-01576217
id fttriple:oai:gotriple.eu:10670/1.pgonw1
record_format openpolar
spelling fttriple:oai:gotriple.eu:10670/1.pgonw1 2023-05-15T16:37:12+02:00 Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century. Magnin, Florence Josnin, Jean-Yves Ravanel, Ludovic Pergaud, Julien Pohl, Benjamin Deline, Philip Environnements, Dynamiques et Territoires de la Montagne (EDYTEM) Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS) Biogéosciences UMR 6282 Dijon (BGS) Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) Work founded by the EU Interreg V-A France-Italy ALCOTRA 2014-2020 no. 342 PrévRisk Haute Montagne project. ANR-14-CE03-0006,VIP-Mont-Blanc,VItesses des Processus contrôlant les évolutions morphologiques et environnementales du massif du Mont Blanc(2014) 2017-08-04 https://doi.org/10.5194/tc-11-1813-2017 https://hal.archives-ouvertes.fr/hal-01576217 en eng HAL CCSD Copernicus hal-01576217 doi:10.5194/tc-11-1813-2017 10670/1.pgonw1 https://hal.archives-ouvertes.fr/hal-01576217 undefined Hyper Article en Ligne - Sciences de l'Homme et de la Société ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere The Cryosphere, Copernicus 2017, 11 (4), pp.1813-1834. ⟨10.5194/tc-11-1813-2017⟩ geo envir Journal Article https://vocabularies.coar-repositories.org/resource_types/c_6501/ 2017 fttriple https://doi.org/10.5194/tc-11-1813-2017 2023-01-22T17:27:46Z International audience High alpine rock wall permafrost is extremely sensitive to climate change. Its degradation has a strong impact on landscape evolution and can trigger rockfalls constituting an increasing threat to socio-economical activities of highly frequented areas; quantitative understanding of permafrost evolution is crucial for such communities. This study investigates the long-term evolution of permafrost in three vertical cross sections of rock wall sites between 3160 and 4300 m above sea level in the Mont Blanc massif, from the Little Ice Age (LIA) steady-state conditions to 2100. Simulations are forced with air temperature time series, including two contrasted air temperature scenarios for the 21st century representing possible lower and upper boundaries of future climate change according to the most recent models and climate change scenarios. The 2-D finite element model accounts for heat conduction and latent heat transfers, and the outputs for the current period (2010–2015) are evaluated against borehole temperature measurements and an electrical resistivity transect: permafrost conditions are remarkably well represented. Over the past two decades, permafrost has disappeared on faces with a southerly aspect up to 3300 m a.s.l. and possibly higher. Warm permafrost (i.e. > − 2 °C) has extended up to 3300 and 3850 m a.s.l. in N and S-exposed faces respectively. During the 21st century, warm permafrost is likely to extend at least up to 4300 m a.s.l. on S-exposed rock walls and up to 3850 m a.s.l. depth on the N-exposed faces. In the most pessimistic case, permafrost will disappear on the S-exposed rock walls at a depth of up to 4300 m a.s.l., whereas warm permafrost will extend at a depth of the N faces up to 3850 m a.s.l., but possibly disappearing at such elevation under the influence of a close S face. The results are site specific and extrapolation to other sites is limited by the imbrication of local topographical and transient effects. 22 pages Article in Journal/Newspaper Ice permafrost The Cryosphere Unknown Mont Blanc ENVELOPE(69.468,69.468,-49.461,-49.461) The Cryosphere 11 4 1813 1834
institution Open Polar
collection Unknown
op_collection_id fttriple
language English
topic geo
envir
spellingShingle geo
envir
Magnin, Florence
Josnin, Jean-Yves
Ravanel, Ludovic
Pergaud, Julien
Pohl, Benjamin
Deline, Philip
Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century.
topic_facet geo
envir
description International audience High alpine rock wall permafrost is extremely sensitive to climate change. Its degradation has a strong impact on landscape evolution and can trigger rockfalls constituting an increasing threat to socio-economical activities of highly frequented areas; quantitative understanding of permafrost evolution is crucial for such communities. This study investigates the long-term evolution of permafrost in three vertical cross sections of rock wall sites between 3160 and 4300 m above sea level in the Mont Blanc massif, from the Little Ice Age (LIA) steady-state conditions to 2100. Simulations are forced with air temperature time series, including two contrasted air temperature scenarios for the 21st century representing possible lower and upper boundaries of future climate change according to the most recent models and climate change scenarios. The 2-D finite element model accounts for heat conduction and latent heat transfers, and the outputs for the current period (2010–2015) are evaluated against borehole temperature measurements and an electrical resistivity transect: permafrost conditions are remarkably well represented. Over the past two decades, permafrost has disappeared on faces with a southerly aspect up to 3300 m a.s.l. and possibly higher. Warm permafrost (i.e. > − 2 °C) has extended up to 3300 and 3850 m a.s.l. in N and S-exposed faces respectively. During the 21st century, warm permafrost is likely to extend at least up to 4300 m a.s.l. on S-exposed rock walls and up to 3850 m a.s.l. depth on the N-exposed faces. In the most pessimistic case, permafrost will disappear on the S-exposed rock walls at a depth of up to 4300 m a.s.l., whereas warm permafrost will extend at a depth of the N faces up to 3850 m a.s.l., but possibly disappearing at such elevation under the influence of a close S face. The results are site specific and extrapolation to other sites is limited by the imbrication of local topographical and transient effects. 22 pages
author2 Environnements, Dynamiques et Territoires de la Montagne (EDYTEM)
Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)
Biogéosciences UMR 6282 Dijon (BGS)
Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)
Work founded by the EU Interreg V-A France-Italy ALCOTRA 2014-2020 no. 342 PrévRisk Haute Montagne project.
ANR-14-CE03-0006,VIP-Mont-Blanc,VItesses des Processus contrôlant les évolutions morphologiques et environnementales du massif du Mont Blanc(2014)
format Article in Journal/Newspaper
author Magnin, Florence
Josnin, Jean-Yves
Ravanel, Ludovic
Pergaud, Julien
Pohl, Benjamin
Deline, Philip
author_facet Magnin, Florence
Josnin, Jean-Yves
Ravanel, Ludovic
Pergaud, Julien
Pohl, Benjamin
Deline, Philip
author_sort Magnin, Florence
title Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century.
title_short Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century.
title_full Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century.
title_fullStr Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century.
title_full_unstemmed Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century.
title_sort modelling rock wall permafrost degradation in the mont blanc massif from the lia to the end of the 21st century.
publisher HAL CCSD
publishDate 2017
url https://doi.org/10.5194/tc-11-1813-2017
https://hal.archives-ouvertes.fr/hal-01576217
long_lat ENVELOPE(69.468,69.468,-49.461,-49.461)
geographic Mont Blanc
geographic_facet Mont Blanc
genre Ice
permafrost
The Cryosphere
genre_facet Ice
permafrost
The Cryosphere
op_source Hyper Article en Ligne - Sciences de l'Homme et de la Société
ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
The Cryosphere, Copernicus 2017, 11 (4), pp.1813-1834. ⟨10.5194/tc-11-1813-2017⟩
op_relation hal-01576217
doi:10.5194/tc-11-1813-2017
10670/1.pgonw1
https://hal.archives-ouvertes.fr/hal-01576217
op_rights undefined
op_doi https://doi.org/10.5194/tc-11-1813-2017
container_title The Cryosphere
container_volume 11
container_issue 4
container_start_page 1813
op_container_end_page 1834
_version_ 1766027492796137472