Modeling plumes containing black-carbon from Siberian sources to the Arctic

There are currently large uncertainties in global climate model predictions of black carbon (BC) in the Arctic. These differences are in part due to uncertainties in anthropogenic and biomass burning emissions, errors arising from model parameterizations, and inadequate spatial resolution in large s...

Full description

Bibliographic Details
Main Authors: Raut, Jean-Christophe, Fast, J. D., Law, Kathy S., Weinzierl, B., Rose, M., Kim, J., Thomas, Jennie L., Marelle, Louis, Roiger, Anke, Schlager, H., Reiter, A., Quennehen, Boris, Ma, P., Singh, B., Rasch, P. J.
Other Authors: TROPO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Pacific Northwest National Laboratory (PNNL), DLR Institut für Physik der Atmosphäre (IPA), Deutsches Zentrum für Luft- und Raumfahrt Oberpfaffenhofen-Wessling (DLR)
Format: Other/Unknown Material
Language:English
Published: HAL CCSD 2013
Subjects:
geo
Online Access:https://hal.archives-ouvertes.fr/hal-00956022
Description
Summary:There are currently large uncertainties in global climate model predictions of black carbon (BC) in the Arctic. These differences are in part due to uncertainties in anthropogenic and biomass burning emissions, errors arising from model parameterizations, and inadequate spatial resolution in large scale models. In addition to the contribution to aerosol radiative forcing, black carbon deposited on snow alters its albedo and consequently the rate of melting. Our study presents the main pollution transport pathways from Siberia to the Arctic and how they impact the Arctic air composition in summer and spring. We focus on two periods (summer 2012 and spring 2008) when field campaigns took place in the Arctic. As part of the Arctic Climate Change, Economy and Society (ACCESS) project, an aircraft campaign was conducted in July 2012 in Andøya, Norway. The main focus of the campaign was to investigate the role of current and future anthropogenic activities in and near the Arctic on regional air pollution and to analyze potential connections to Arctic climate. To put the emerging local pollution within a broader context, biomass burning plumes containing black carbon imported from Siberian wildfires were sampled during the campaign. Two flights north of Norway into the Arctic, with a refueling stop in Spitsbergen focused specifically on biomass burning pollution transported across the North Pole from Siberia. To simulate the emission, transport, and fate of black carbon, we use a regional chemical transport model, the Weather Research and Forecasting model with chemistry (WRF-Chem), with a model domain that encompasses most of the northern hemisphere. The model is able to represent the most intense plumes sampled during the flights in the North of Spitsbergen, with ~120 ppb CO enhancement. The simulations show a clear connection of these plumes to fires in Siberia and Central Russia and are complemented by a more detailed comparison to airborne observations and satellite measurements in terms of spatial and vertical ...