Understanding the mechanisms involved in the high sensitivity of Pecten maximus larvae to aeration

WOS:000442900300025 International audience Among reared bivalves, some "novel species", such as the great scallop, Pecten maximus, have experienced more difficulty with routine reproduction due to their high sensitivity to biological, chemical, and physical stress during stages of early de...

Full description

Bibliographic Details
Published in:Aquaculture
Main Authors: Pauletto, Marianna, Di Camillo, Barbara, Miner, Philippe, Huvet, Arnaud, Quillien, Virgile, Milan, Massimo, Ferraresso, Serena, Pegolo, Sara, Patarnello, Tomaso, Bargelloni, Luca
Other Authors: Universita degli Studi di Padova, Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Français de Recherche pour l'Exploitation de la Mer - Brest (IFREMER Centre de Bretagne), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), European Project: 245119,EC:FP7:KBBE,FP7-KBBE-2009-3,REPROSEED(2010)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
ACL
Online Access:https://doi.org/10.1016/j.aquaculture.2018.07.059
https://hal.archives-ouvertes.fr/hal-02640327/file/Pauletto_etal_Aquaculture_2018.pdf
https://hal.archives-ouvertes.fr/hal-02640327
Description
Summary:WOS:000442900300025 International audience Among reared bivalves, some "novel species", such as the great scallop, Pecten maximus, have experienced more difficulty with routine reproduction due to their high sensitivity to biological, chemical, and physical stress during stages of early development. Working with high larval densities requires the use of aeration systems to provide optimal larval suspension and feed distribution. The high susceptibility of the great scallop to aeration in small-volume systems may impose an important limitation in hatchery-based practices. The present study aimed to investigate the processes impacted by aeration in P. maximus veliger larvae exposed to continuous aeration in small-volume tanks (10 L). Aeration appeared as major stressor that was responsible for early mortality among exposed animals (at 96 h after aeration started, haa) when exposure started 13 days after fertilization. Exposed larvae and controls were collected at 12, 24 and 72 haa, and a total of 18 cDNA libraries, each representing a pool of approximately 7,500 larvae, were sequenced, obtaining 358,817,016 raw reads. RNA-seq data were first used to build a de novo transcriptome assembly, and differential transcript abundance was assessed in exposed and control groups; thus, the molecular mechanisms involved in high sensitivity to aeration were deciphered. More than 2,000 transcripts were differentially expressed between exposed and control larvae across the entire time series (logFC \textgreater 1, FDR \textless 5%). Functional analysis revealed that transcriptional changes in larvae exposed to aeration mainly involved the genes that regulate digestive activity and energy metabolism, immune defense, inflammation, apoptosis, larval growth, and development. The results of this study demonstrate that, overall, aeration affects the feeding capacity and energy metabolism of larvae, with expected consequences on the animal's fitness, including its swimming efficiency. Aeration also triggered immune responses and ...