Processes Driving Global Interior Ocean pH Distribution

Ocean acidification evolves on the background of a natural ocean pH gradient that is the result of the interplay between ocean mixing, biological production and remineralization, calcium carbonate cycling, and temperature and pressure changes across the water column. While previous studies have anal...

Full description

Bibliographic Details
Published in:Global Biogeochemical Cycles
Main Authors: Lauvset, S. K., Carter, B. R., Perez, Ff, Jiang, L-q, Feely, R. A., Velo, A., Olsen, A.
Format: Text
Language:English
Published: Amer Geophysical Union 2020
Subjects:
geo
Online Access:https://doi.org/10.1029/2019GB006229
https://archimer.ifremer.fr/doc/00676/78793/81066.pdf
https://archimer.ifremer.fr/doc/00676/78793/81067.pdf
https://archimer.ifremer.fr/doc/00676/78793/
id fttriple:oai:gotriple.eu:10670/1.euhfbx
record_format openpolar
spelling fttriple:oai:gotriple.eu:10670/1.euhfbx 2023-05-15T17:50:00+02:00 Processes Driving Global Interior Ocean pH Distribution Lauvset, S. K. Carter, B. R. Perez, Ff Jiang, L-q Feely, R. A. Velo, A. Olsen, A. 2020-01-01 https://doi.org/10.1029/2019GB006229 https://archimer.ifremer.fr/doc/00676/78793/81066.pdf https://archimer.ifremer.fr/doc/00676/78793/81067.pdf https://archimer.ifremer.fr/doc/00676/78793/ en eng Amer Geophysical Union doi:10.1029/2019GB006229 10670/1.euhfbx https://archimer.ifremer.fr/doc/00676/78793/81066.pdf https://archimer.ifremer.fr/doc/00676/78793/81067.pdf https://archimer.ifremer.fr/doc/00676/78793/ other Archimer, archive institutionnelle de l'Ifremer Global Biogeochemical Cycles (0886-6236) (Amer Geophysical Union), 2020-01 , Vol. 34 , N. 1 , P. e2019GB006229 (17p.) envir geo Text https://vocabularies.coar-repositories.org/resource_types/c_18cf/ 2020 fttriple https://doi.org/10.1029/2019GB006229 2023-01-22T17:06:11Z Ocean acidification evolves on the background of a natural ocean pH gradient that is the result of the interplay between ocean mixing, biological production and remineralization, calcium carbonate cycling, and temperature and pressure changes across the water column. While previous studies have analyzed these processes and their impacts on ocean carbonate chemistry, none have attempted to quantify their impacts on interior ocean pH globally. Here we evaluate how anthropogenic changes and natural processes collectively act on ocean pH, and how these processes set the vulnerability of regions to future changes in ocean acidification. We use the mapped data product from the Global Ocean Data Analysis Project version 2, a novel method to estimate preformed total alkalinity based on a combination of a total matrix intercomparison and locally interpolated regressions, and a comprehensive uncertainty analysis. We find that the largest contribution to the interior ocean pH gradient comes from organic matter remineralization, with CaCO3 cycling being the second most important process. The estimates of the impact of anthropogenic CO2 changes on pH reaffirm the large and well-understood anthropogenic impact on pH in the surface ocean, and put it in the context of the natural pH gradient in the interior ocean. We also show that in the depth layer 500-1,500 m natural processes enhance ocean acidification by on average 28 +/- 15%, but with large regional gradients. Text Ocean acidification Unknown Global Biogeochemical Cycles 34 1
institution Open Polar
collection Unknown
op_collection_id fttriple
language English
topic envir
geo
spellingShingle envir
geo
Lauvset, S. K.
Carter, B. R.
Perez, Ff
Jiang, L-q
Feely, R. A.
Velo, A.
Olsen, A.
Processes Driving Global Interior Ocean pH Distribution
topic_facet envir
geo
description Ocean acidification evolves on the background of a natural ocean pH gradient that is the result of the interplay between ocean mixing, biological production and remineralization, calcium carbonate cycling, and temperature and pressure changes across the water column. While previous studies have analyzed these processes and their impacts on ocean carbonate chemistry, none have attempted to quantify their impacts on interior ocean pH globally. Here we evaluate how anthropogenic changes and natural processes collectively act on ocean pH, and how these processes set the vulnerability of regions to future changes in ocean acidification. We use the mapped data product from the Global Ocean Data Analysis Project version 2, a novel method to estimate preformed total alkalinity based on a combination of a total matrix intercomparison and locally interpolated regressions, and a comprehensive uncertainty analysis. We find that the largest contribution to the interior ocean pH gradient comes from organic matter remineralization, with CaCO3 cycling being the second most important process. The estimates of the impact of anthropogenic CO2 changes on pH reaffirm the large and well-understood anthropogenic impact on pH in the surface ocean, and put it in the context of the natural pH gradient in the interior ocean. We also show that in the depth layer 500-1,500 m natural processes enhance ocean acidification by on average 28 +/- 15%, but with large regional gradients.
format Text
author Lauvset, S. K.
Carter, B. R.
Perez, Ff
Jiang, L-q
Feely, R. A.
Velo, A.
Olsen, A.
author_facet Lauvset, S. K.
Carter, B. R.
Perez, Ff
Jiang, L-q
Feely, R. A.
Velo, A.
Olsen, A.
author_sort Lauvset, S. K.
title Processes Driving Global Interior Ocean pH Distribution
title_short Processes Driving Global Interior Ocean pH Distribution
title_full Processes Driving Global Interior Ocean pH Distribution
title_fullStr Processes Driving Global Interior Ocean pH Distribution
title_full_unstemmed Processes Driving Global Interior Ocean pH Distribution
title_sort processes driving global interior ocean ph distribution
publisher Amer Geophysical Union
publishDate 2020
url https://doi.org/10.1029/2019GB006229
https://archimer.ifremer.fr/doc/00676/78793/81066.pdf
https://archimer.ifremer.fr/doc/00676/78793/81067.pdf
https://archimer.ifremer.fr/doc/00676/78793/
genre Ocean acidification
genre_facet Ocean acidification
op_source Archimer, archive institutionnelle de l'Ifremer
Global Biogeochemical Cycles (0886-6236) (Amer Geophysical Union), 2020-01 , Vol. 34 , N. 1 , P. e2019GB006229 (17p.)
op_relation doi:10.1029/2019GB006229
10670/1.euhfbx
https://archimer.ifremer.fr/doc/00676/78793/81066.pdf
https://archimer.ifremer.fr/doc/00676/78793/81067.pdf
https://archimer.ifremer.fr/doc/00676/78793/
op_rights other
op_doi https://doi.org/10.1029/2019GB006229
container_title Global Biogeochemical Cycles
container_volume 34
container_issue 1
_version_ 1766156564637417472