Impact of the natural Fe-fertilization on the magnitude, stoichiometry and efficiency of particulate biogenic silica, nitrogen and iron export fluxes
00000 ăWOS:000390514800002 International audience The Kerguelen Plateau is characterized by a naturally Fe-fertilized phytoplanlcton bloom that extends more than 1000 km downstream in the Antarctic Circumpolar Current. During the KEOPS2 study, in austral spring, we measured particulate nitrogen (PN)...
Published in: | Deep Sea Research Part I: Oceanographic Research Papers |
---|---|
Main Authors: | , , , , , , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2016
|
Subjects: | |
Online Access: | https://doi.org/10.1016/j.dsr.2016.09.002 https://hal.archives-ouvertes.fr/hal-01483202 |
Summary: | 00000 ăWOS:000390514800002 International audience The Kerguelen Plateau is characterized by a naturally Fe-fertilized phytoplanlcton bloom that extends more than 1000 km downstream in the Antarctic Circumpolar Current. During the KEOPS2 study, in austral spring, we measured particulate nitrogen (PN), biogenic silica (BSi) and particulate iron (PFe) export fluxes in order to investigate how the natural fertilization impacts the stoichiometry and the magnitude of export fluxes and therefore the efficiency of the biological carbon pump. At 9 stations, we estimated elemental export fluxes based on element concentration to Th-234 activity ratios for particulate material collected with in-situ pumps and Th-234 export fluxes (Planchon et al., 2015). This study revealed that the natural Fe-fertilization increased export fluxes but to variable degrees. Export fluxes for the bloom impacted area were compared with those of a high-nutrient, low-chlorophyll (HNLC), low-productive reference site located to the south-west of Kerguelen and which had the lowest BSi and PFe export fluxes (2.55 mmol BSi m(-2) d(-1) and 1.92 mu mol PFem(-2) d(-1)) and amongst the lowest PN export flux (0.73 mmol PN m(-2) d(-1)). The impact of the Fe fertilization was the greatest within a meander of the polar front (PF), to the east of Kerguelen, with fluxes reaching 1.26 mmol PN m(-2) d(-1); 20.4 mmol BSi m(-2) d(-1) and 22.4 mu mol PFe m(-2) d(-1). A highly productive site above the Kerguelen Plateau, on the contrary, was less impacted by the fertilization with export fluxes reaching 0.72 mmol PN m(-2) d(-1); 4.50 mmol BSi m(-2) d(-1) and 21.4 mu mol PFe d(-1). Our results suggest that ecosystem features (i.e. type of diatom community) could play an important role in setting the magnitude of export fluxes of these elements. Indeed, for the PF meander, the moderate productivity was sustained by the presence of large and strongly silicified diatom species while at the higher productivity sites, smaller and slightly silicified diatoms dominated. ... |
---|