Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity:

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by...

Full description

Bibliographic Details
Main Authors: Mann, G.W., Carslaw, K.S., Reddington, C.L., Pringle, K.J., Schulz, M., Asmi, A., Spracklen, D.V., Ridley, D.A., Woodhouse, M.T., Lee, L.A., Zhang, K., Ghan, S.J., Easter, R.C., Liu, X., Stier, P., Lee, Y.H., Adams, P.J., Tost, H., Lelieveld, J., Bauer, S.E., Tsigaridis, K., Van Noije, T.P.C., Strunk, A., Vignati, E., Bellouin, N., Dalvi, M., Johnson, C.E., Bergman, T., Kokkola, H., Von Salzen, K., Yu, F., Luo, G., Petzold, A., Heintzenberg, J., Clarke, A., Ogren, J.A., Gras, J., Baltensperger, U., Kaminski, U., Jennings, S.G., O'Dowd, C.D., Harrison, R.M., Beddows, D.C.S., Kulmala, M., Viisanen, Y., Ulevicius, V., Mihalopoulos, N., Zdimal, V., Fiebig, M., Hansson, H.C., Swietlicki, E., Henzing, J.S.
Format: Article in Journal/Newspaper
Language:English
Published: European Geosciences Union 2014
Subjects:
Online Access:http://resolver.tudelft.nl/uuid:e950f4fc-8d5d-4991-be5c-70a17f0d826f
id fttno:oai:tudelft.nl:uuid:e950f4fc-8d5d-4991-be5c-70a17f0d826f
record_format openpolar
spelling fttno:oai:tudelft.nl:uuid:e950f4fc-8d5d-4991-be5c-70a17f0d826f 2023-05-15T15:18:53+02:00 Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity: Mann, G.W. Carslaw, K.S. Reddington, C.L. Pringle, K.J. Schulz, M. Asmi, A. Spracklen, D.V. Ridley, D.A. Woodhouse, M.T. Lee, L.A. Zhang, K. Ghan, S.J. Easter, R.C. Liu, X. Stier, P. Lee, Y.H. Adams, P.J. Tost, H. Lelieveld, J. Bauer, S.E. Tsigaridis, K. Van Noije, T.P.C. Strunk, A. Vignati, E. Bellouin, N. Dalvi, M. Johnson, C.E. Bergman, T. Kokkola, H. Von Salzen, K. Yu, F. Luo, G. Petzold, A. Heintzenberg, J. Clarke, A. Ogren, J.A. Gras, J. Baltensperger, U. Kaminski, U. Jennings, S.G. O'Dowd, C.D. Harrison, R.M. Beddows, D.C.S. Kulmala, M. Viisanen, Y. Ulevicius, V. Mihalopoulos, N. Zdimal, V. Fiebig, M. Hansson, H.C. Swietlicki, E. Henzing, J.S. 2014-01-01 http://resolver.tudelft.nl/uuid:e950f4fc-8d5d-4991-be5c-70a17f0d826f en eng European Geosciences Union uuid:e950f4fc-8d5d-4991-be5c-70a17f0d826f 503268 http://resolver.tudelft.nl/uuid:e950f4fc-8d5d-4991-be5c-70a17f0d826f Atmospheric Chemistry and Physics, 9, 14, 4679-4713 Environment Urban Development Built Environment Earth / Environmental CAS - Climate Air and Sustainability ELSS - Earth Life and Social Sciences article 2014 fttno 2022-04-10T15:46:12Z Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions. © 2014 Author(s). Article in Journal/Newspaper Arctic TU Delft: Institutional Repository (Delft University of Technology) Arctic Aitken ENVELOPE(-44.516,-44.516,-60.733,-60.733)
institution Open Polar
collection TU Delft: Institutional Repository (Delft University of Technology)
op_collection_id fttno
language English
topic Environment
Urban Development
Built Environment
Earth / Environmental
CAS - Climate
Air and Sustainability
ELSS - Earth
Life and Social Sciences
spellingShingle Environment
Urban Development
Built Environment
Earth / Environmental
CAS - Climate
Air and Sustainability
ELSS - Earth
Life and Social Sciences
Mann, G.W.
Carslaw, K.S.
Reddington, C.L.
Pringle, K.J.
Schulz, M.
Asmi, A.
Spracklen, D.V.
Ridley, D.A.
Woodhouse, M.T.
Lee, L.A.
Zhang, K.
Ghan, S.J.
Easter, R.C.
Liu, X.
Stier, P.
Lee, Y.H.
Adams, P.J.
Tost, H.
Lelieveld, J.
Bauer, S.E.
Tsigaridis, K.
Van Noije, T.P.C.
Strunk, A.
Vignati, E.
Bellouin, N.
Dalvi, M.
Johnson, C.E.
Bergman, T.
Kokkola, H.
Von Salzen, K.
Yu, F.
Luo, G.
Petzold, A.
Heintzenberg, J.
Clarke, A.
Ogren, J.A.
Gras, J.
Baltensperger, U.
Kaminski, U.
Jennings, S.G.
O'Dowd, C.D.
Harrison, R.M.
Beddows, D.C.S.
Kulmala, M.
Viisanen, Y.
Ulevicius, V.
Mihalopoulos, N.
Zdimal, V.
Fiebig, M.
Hansson, H.C.
Swietlicki, E.
Henzing, J.S.
Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity:
topic_facet Environment
Urban Development
Built Environment
Earth / Environmental
CAS - Climate
Air and Sustainability
ELSS - Earth
Life and Social Sciences
description Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions. © 2014 Author(s).
format Article in Journal/Newspaper
author Mann, G.W.
Carslaw, K.S.
Reddington, C.L.
Pringle, K.J.
Schulz, M.
Asmi, A.
Spracklen, D.V.
Ridley, D.A.
Woodhouse, M.T.
Lee, L.A.
Zhang, K.
Ghan, S.J.
Easter, R.C.
Liu, X.
Stier, P.
Lee, Y.H.
Adams, P.J.
Tost, H.
Lelieveld, J.
Bauer, S.E.
Tsigaridis, K.
Van Noije, T.P.C.
Strunk, A.
Vignati, E.
Bellouin, N.
Dalvi, M.
Johnson, C.E.
Bergman, T.
Kokkola, H.
Von Salzen, K.
Yu, F.
Luo, G.
Petzold, A.
Heintzenberg, J.
Clarke, A.
Ogren, J.A.
Gras, J.
Baltensperger, U.
Kaminski, U.
Jennings, S.G.
O'Dowd, C.D.
Harrison, R.M.
Beddows, D.C.S.
Kulmala, M.
Viisanen, Y.
Ulevicius, V.
Mihalopoulos, N.
Zdimal, V.
Fiebig, M.
Hansson, H.C.
Swietlicki, E.
Henzing, J.S.
author_facet Mann, G.W.
Carslaw, K.S.
Reddington, C.L.
Pringle, K.J.
Schulz, M.
Asmi, A.
Spracklen, D.V.
Ridley, D.A.
Woodhouse, M.T.
Lee, L.A.
Zhang, K.
Ghan, S.J.
Easter, R.C.
Liu, X.
Stier, P.
Lee, Y.H.
Adams, P.J.
Tost, H.
Lelieveld, J.
Bauer, S.E.
Tsigaridis, K.
Van Noije, T.P.C.
Strunk, A.
Vignati, E.
Bellouin, N.
Dalvi, M.
Johnson, C.E.
Bergman, T.
Kokkola, H.
Von Salzen, K.
Yu, F.
Luo, G.
Petzold, A.
Heintzenberg, J.
Clarke, A.
Ogren, J.A.
Gras, J.
Baltensperger, U.
Kaminski, U.
Jennings, S.G.
O'Dowd, C.D.
Harrison, R.M.
Beddows, D.C.S.
Kulmala, M.
Viisanen, Y.
Ulevicius, V.
Mihalopoulos, N.
Zdimal, V.
Fiebig, M.
Hansson, H.C.
Swietlicki, E.
Henzing, J.S.
author_sort Mann, G.W.
title Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity:
title_short Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity:
title_full Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity:
title_fullStr Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity:
title_full_unstemmed Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity:
title_sort intercomparison and evaluation of global aerosol microphysical properties among aerocom models of a range of complexity:
publisher European Geosciences Union
publishDate 2014
url http://resolver.tudelft.nl/uuid:e950f4fc-8d5d-4991-be5c-70a17f0d826f
long_lat ENVELOPE(-44.516,-44.516,-60.733,-60.733)
geographic Arctic
Aitken
geographic_facet Arctic
Aitken
genre Arctic
genre_facet Arctic
op_source Atmospheric Chemistry and Physics, 9, 14, 4679-4713
op_relation uuid:e950f4fc-8d5d-4991-be5c-70a17f0d826f
503268
http://resolver.tudelft.nl/uuid:e950f4fc-8d5d-4991-be5c-70a17f0d826f
_version_ 1766349057787166720