Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)

Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea...

Full description

Bibliographic Details
Main Authors: Asay-Davis, Xylar S., Cornford, Stephen L., Durand, Gaël, Galton-Fenzi, Benjamin K., Gladstone, Rupert M., Gudmundsson, G. Hilmar, Hattermann, Tore, Holland, David M., Holland, Denise, Holland, Paul R., Martin, Daniel F., Mathiot, Pierre, Pattyn, Frank, Seroussi, Hélène
Format: Article in Journal/Newspaper
Language:English
Published: München : European Geopyhsical Union 2016
Subjects:
Online Access:https://oa.tib.eu/renate/handle/123456789/491
https://doi.org/10.34657/955
id fttibhannoverren:oai:oa.tib.eu:123456789/491
record_format openpolar
spelling fttibhannoverren:oai:oa.tib.eu:123456789/491 2023-05-15T13:24:13+02:00 Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1) Asay-Davis, Xylar S. Cornford, Stephen L. Durand, Gaël Galton-Fenzi, Benjamin K. Gladstone, Rupert M. Gudmundsson, G. Hilmar Hattermann, Tore Holland, David M. Holland, Denise Holland, Paul R. Martin, Daniel F. Mathiot, Pierre Pattyn, Frank Seroussi, Hélène 2016 application/pdf https://oa.tib.eu/renate/handle/123456789/491 https://doi.org/10.34657/955 eng eng München : European Geopyhsical Union DOI:https://doi.org/10.5194/gmd-9-2471-2016 https://doi.org/10.34657/955 https://oa.tib.eu/renate/handle/123456789/491 CC BY 3.0 Unported https://creativecommons.org/licenses/by/3.0/ frei zugänglich CC-BY Geoscientific Model Development, Volume 9, Issue 7, Page 2471-2497 Basal melting design method experimental design experimental study grounding line ice sheet ice shelf oceanic general circulation model qualitative analysis sea level change tidewater glacier topography ddc:550 status-type:publishedVersion doc-type:article doc-type:Text 2016 fttibhannoverren https://doi.org/10.34657/955 https://doi.org/10.5194/gmd-9-2471-2016 2022-09-19T16:17:58Z Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet–ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models. Article in Journal/Newspaper Amundsen Sea Antarc* Antarctic Ice Sheet Ice Shelf Pine Island Glacier Tidewater Renate - Repositorium für Naturwissenschaften und Technik (TIB Hannover) Antarctic Amundsen Sea West Antarctic Ice Sheet Pine Island Glacier ENVELOPE(-101.000,-101.000,-75.000,-75.000)
institution Open Polar
collection Renate - Repositorium für Naturwissenschaften und Technik (TIB Hannover)
op_collection_id fttibhannoverren
language English
topic Basal melting
design method
experimental design
experimental study
grounding line
ice sheet
ice shelf
oceanic general circulation model
qualitative analysis
sea level change
tidewater glacier
topography
ddc:550
spellingShingle Basal melting
design method
experimental design
experimental study
grounding line
ice sheet
ice shelf
oceanic general circulation model
qualitative analysis
sea level change
tidewater glacier
topography
ddc:550
Asay-Davis, Xylar S.
Cornford, Stephen L.
Durand, Gaël
Galton-Fenzi, Benjamin K.
Gladstone, Rupert M.
Gudmundsson, G. Hilmar
Hattermann, Tore
Holland, David M.
Holland, Denise
Holland, Paul R.
Martin, Daniel F.
Mathiot, Pierre
Pattyn, Frank
Seroussi, Hélène
Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
topic_facet Basal melting
design method
experimental design
experimental study
grounding line
ice sheet
ice shelf
oceanic general circulation model
qualitative analysis
sea level change
tidewater glacier
topography
ddc:550
description Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet–ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.
format Article in Journal/Newspaper
author Asay-Davis, Xylar S.
Cornford, Stephen L.
Durand, Gaël
Galton-Fenzi, Benjamin K.
Gladstone, Rupert M.
Gudmundsson, G. Hilmar
Hattermann, Tore
Holland, David M.
Holland, Denise
Holland, Paul R.
Martin, Daniel F.
Mathiot, Pierre
Pattyn, Frank
Seroussi, Hélène
author_facet Asay-Davis, Xylar S.
Cornford, Stephen L.
Durand, Gaël
Galton-Fenzi, Benjamin K.
Gladstone, Rupert M.
Gudmundsson, G. Hilmar
Hattermann, Tore
Holland, David M.
Holland, Denise
Holland, Paul R.
Martin, Daniel F.
Mathiot, Pierre
Pattyn, Frank
Seroussi, Hélène
author_sort Asay-Davis, Xylar S.
title Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
title_short Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
title_full Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
title_fullStr Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
title_full_unstemmed Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
title_sort experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: mismip v. 3 (mismip +), isomip v. 2 (isomip +) and misomip v. 1 (misomip1)
publisher München : European Geopyhsical Union
publishDate 2016
url https://oa.tib.eu/renate/handle/123456789/491
https://doi.org/10.34657/955
long_lat ENVELOPE(-101.000,-101.000,-75.000,-75.000)
geographic Antarctic
Amundsen Sea
West Antarctic Ice Sheet
Pine Island Glacier
geographic_facet Antarctic
Amundsen Sea
West Antarctic Ice Sheet
Pine Island Glacier
genre Amundsen Sea
Antarc*
Antarctic
Ice Sheet
Ice Shelf
Pine Island Glacier
Tidewater
genre_facet Amundsen Sea
Antarc*
Antarctic
Ice Sheet
Ice Shelf
Pine Island Glacier
Tidewater
op_source Geoscientific Model Development, Volume 9, Issue 7, Page 2471-2497
op_relation DOI:https://doi.org/10.5194/gmd-9-2471-2016
https://doi.org/10.34657/955
https://oa.tib.eu/renate/handle/123456789/491
op_rights CC BY 3.0 Unported
https://creativecommons.org/licenses/by/3.0/
frei zugänglich
op_rightsnorm CC-BY
op_doi https://doi.org/10.34657/955
https://doi.org/10.5194/gmd-9-2471-2016
_version_ 1766378120842051584