Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic

The outflow of dust from the northern African continent towards the North Atlantic is stimulated by the atmospheric circulation over North Africa, which modulates the spatio-temporal distribution of dust source activation and consequently the entrainment of mineral dust into the boundary layer, as w...

Full description

Bibliographic Details
Main Authors: Schepanski, Kerstin, Heinold, Bernd, Tegen, Ina
Format: Article in Journal/Newspaper
Language:English
Published: München : European Geopyhsical Union 2017
Subjects:
Online Access:https://oa.tib.eu/renate/handle/123456789/282
https://doi.org/10.34657/985
id fttibhannoverren:oai:oa.tib.eu:123456789/282
record_format openpolar
spelling fttibhannoverren:oai:oa.tib.eu:123456789/282 2024-09-15T18:22:17+00:00 Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic Schepanski, Kerstin Heinold, Bernd Tegen, Ina 2017 application/pdf https://oa.tib.eu/renate/handle/123456789/282 https://doi.org/10.34657/985 eng eng München : European Geopyhsical Union DOI:https://doi.org/10.5194/acp-17-10223-2017 https://doi.org/10.34657/985 https://oa.tib.eu/renate/handle/123456789/282 CC BY 3.0 Unported https://creativecommons.org/licenses/by/3.0/ frei zugänglich ddc:550 status-type:publishedVersion doc-type:Article doc-type:Text 2017 fttibhannoverren https://doi.org/10.34657/98510.5194/acp-17-10223-2017 2024-06-26T23:32:42Z The outflow of dust from the northern African continent towards the North Atlantic is stimulated by the atmospheric circulation over North Africa, which modulates the spatio-temporal distribution of dust source activation and consequently the entrainment of mineral dust into the boundary layer, as well as the transport of dust out of the source regions. The atmospheric circulation over the North African dust source regions, predominantly the Sahara and the Sahel, is characterized by three major circulation regimes: (1) the harmattan (trade winds), (2) the Saharan heat low (SHL), and (3) the West African monsoon circulation. The strength of the individual regimes controls the Saharan dust outflow by affecting the spatio-temporal distribution of dust emission, transport pathways, and deposition fluxes. This study aims at investigating the atmospheric circulation pattern over North Africa with regard to its role favouring dust emission and dust export towards the tropical North Atlantic. The focus of the study is on summer 2013 (June to August), during which the SALTRACE (Saharan Aerosol Long-range TRansport and Aerosol-Cloud interaction Experiment) field campaign also took place. It involves satellite observations by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) flying on board the geostationary Meteosat Second Generation (MSG) satellite, which are analysed and used to infer a data set of active dust sources. The spatio-temporal distribution of dust source activation frequencies (DSAFs) allows for linking the diurnal cycle of dust source activations to dominant meteorological controls on dust emission. In summer, Saharan dust source activations clearly differ from dust source activations over the Sahel regarding the time of day when dust emission begins. The Sahara is dominated by morning dust source activations predominantly driven by the breakdown of the nocturnal low-level jet. In contrast, dust source activations in the Sahel are predominantly activated during the second half of the day, when ... Article in Journal/Newspaper North Atlantic Renate - Repositorium für Naturwissenschaften und Technik (TIB Hannover)
institution Open Polar
collection Renate - Repositorium für Naturwissenschaften und Technik (TIB Hannover)
op_collection_id fttibhannoverren
language English
topic ddc:550
spellingShingle ddc:550
Schepanski, Kerstin
Heinold, Bernd
Tegen, Ina
Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic
topic_facet ddc:550
description The outflow of dust from the northern African continent towards the North Atlantic is stimulated by the atmospheric circulation over North Africa, which modulates the spatio-temporal distribution of dust source activation and consequently the entrainment of mineral dust into the boundary layer, as well as the transport of dust out of the source regions. The atmospheric circulation over the North African dust source regions, predominantly the Sahara and the Sahel, is characterized by three major circulation regimes: (1) the harmattan (trade winds), (2) the Saharan heat low (SHL), and (3) the West African monsoon circulation. The strength of the individual regimes controls the Saharan dust outflow by affecting the spatio-temporal distribution of dust emission, transport pathways, and deposition fluxes. This study aims at investigating the atmospheric circulation pattern over North Africa with regard to its role favouring dust emission and dust export towards the tropical North Atlantic. The focus of the study is on summer 2013 (June to August), during which the SALTRACE (Saharan Aerosol Long-range TRansport and Aerosol-Cloud interaction Experiment) field campaign also took place. It involves satellite observations by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) flying on board the geostationary Meteosat Second Generation (MSG) satellite, which are analysed and used to infer a data set of active dust sources. The spatio-temporal distribution of dust source activation frequencies (DSAFs) allows for linking the diurnal cycle of dust source activations to dominant meteorological controls on dust emission. In summer, Saharan dust source activations clearly differ from dust source activations over the Sahel regarding the time of day when dust emission begins. The Sahara is dominated by morning dust source activations predominantly driven by the breakdown of the nocturnal low-level jet. In contrast, dust source activations in the Sahel are predominantly activated during the second half of the day, when ...
format Article in Journal/Newspaper
author Schepanski, Kerstin
Heinold, Bernd
Tegen, Ina
author_facet Schepanski, Kerstin
Heinold, Bernd
Tegen, Ina
author_sort Schepanski, Kerstin
title Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic
title_short Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic
title_full Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic
title_fullStr Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic
title_full_unstemmed Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic
title_sort harmattan, saharan heat low, and west african monsoon circulation: modulations on the saharan dust outflow towards the north atlantic
publisher München : European Geopyhsical Union
publishDate 2017
url https://oa.tib.eu/renate/handle/123456789/282
https://doi.org/10.34657/985
genre North Atlantic
genre_facet North Atlantic
op_relation DOI:https://doi.org/10.5194/acp-17-10223-2017
https://doi.org/10.34657/985
https://oa.tib.eu/renate/handle/123456789/282
op_rights CC BY 3.0 Unported
https://creativecommons.org/licenses/by/3.0/
frei zugänglich
op_doi https://doi.org/10.34657/98510.5194/acp-17-10223-2017
_version_ 1810461928726724608