Simulation of the future sea level contribution of Greenland with a new glacial system model

We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial...

Full description

Bibliographic Details
Main Authors: Calov, Reinhard, Beyer, Sebastian, Greve, Ralf, Beckmann, Johanna, Willeit, Matteo, Kleiner, Thomas, Rückamp, Martin, Humbert, Angelika, Ganopolski, Andrey
Format: Article in Journal/Newspaper
Language:English
Published: Katlenburg-Lindau : Copernicus 2018
Subjects:
Online Access:https://oa.tib.eu/renate/handle/123456789/11317
https://doi.org/10.34657/10352
id fttibhannoverren:oai:oa.tib.eu:123456789/11317
record_format openpolar
spelling fttibhannoverren:oai:oa.tib.eu:123456789/11317 2024-09-15T17:47:51+00:00 Simulation of the future sea level contribution of Greenland with a new glacial system model Calov, Reinhard Beyer, Sebastian Greve, Ralf Beckmann, Johanna Willeit, Matteo Kleiner, Thomas Rückamp, Martin Humbert, Angelika Ganopolski, Andrey 2018 application/pdf https://oa.tib.eu/renate/handle/123456789/11317 https://doi.org/10.34657/10352 eng eng Katlenburg-Lindau : Copernicus ESSN:1994-0424 DOI:https://doi.org/10.5194/tc-12-3097-2018 https://oa.tib.eu/renate/handle/123456789/11317 http://dx.doi.org/10.34657/10352 CC BY 4.0 Unported https://creativecommons.org/licenses/by/4.0/ frei zugänglich ddc:910 ddc:550 ice-sheet model surface mass-balance submarine melt numerical simulations water-flow ocean projections elevation sensitivity antarctica status-type:publishedVersion doc-type:Article doc-type:Text 2018 fttibhannoverren https://doi.org/10.34657/1035210.5194/tc-12-3097-2018 2024-07-03T23:33:53Z We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961-1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961-1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation-surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation-surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, ... Article in Journal/Newspaper Antarc* Antarctica Greenland GRIP ice core Ice Sheet Renate - Repositorium für Naturwissenschaften und Technik (TIB Hannover)
institution Open Polar
collection Renate - Repositorium für Naturwissenschaften und Technik (TIB Hannover)
op_collection_id fttibhannoverren
language English
topic ddc:910
ddc:550
ice-sheet model
surface mass-balance
submarine melt
numerical simulations
water-flow
ocean
projections
elevation
sensitivity
antarctica
spellingShingle ddc:910
ddc:550
ice-sheet model
surface mass-balance
submarine melt
numerical simulations
water-flow
ocean
projections
elevation
sensitivity
antarctica
Calov, Reinhard
Beyer, Sebastian
Greve, Ralf
Beckmann, Johanna
Willeit, Matteo
Kleiner, Thomas
Rückamp, Martin
Humbert, Angelika
Ganopolski, Andrey
Simulation of the future sea level contribution of Greenland with a new glacial system model
topic_facet ddc:910
ddc:550
ice-sheet model
surface mass-balance
submarine melt
numerical simulations
water-flow
ocean
projections
elevation
sensitivity
antarctica
description We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961-1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961-1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation-surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation-surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, ...
format Article in Journal/Newspaper
author Calov, Reinhard
Beyer, Sebastian
Greve, Ralf
Beckmann, Johanna
Willeit, Matteo
Kleiner, Thomas
Rückamp, Martin
Humbert, Angelika
Ganopolski, Andrey
author_facet Calov, Reinhard
Beyer, Sebastian
Greve, Ralf
Beckmann, Johanna
Willeit, Matteo
Kleiner, Thomas
Rückamp, Martin
Humbert, Angelika
Ganopolski, Andrey
author_sort Calov, Reinhard
title Simulation of the future sea level contribution of Greenland with a new glacial system model
title_short Simulation of the future sea level contribution of Greenland with a new glacial system model
title_full Simulation of the future sea level contribution of Greenland with a new glacial system model
title_fullStr Simulation of the future sea level contribution of Greenland with a new glacial system model
title_full_unstemmed Simulation of the future sea level contribution of Greenland with a new glacial system model
title_sort simulation of the future sea level contribution of greenland with a new glacial system model
publisher Katlenburg-Lindau : Copernicus
publishDate 2018
url https://oa.tib.eu/renate/handle/123456789/11317
https://doi.org/10.34657/10352
genre Antarc*
Antarctica
Greenland
GRIP
ice core
Ice Sheet
genre_facet Antarc*
Antarctica
Greenland
GRIP
ice core
Ice Sheet
op_relation ESSN:1994-0424
DOI:https://doi.org/10.5194/tc-12-3097-2018
https://oa.tib.eu/renate/handle/123456789/11317
http://dx.doi.org/10.34657/10352
op_rights CC BY 4.0 Unported
https://creativecommons.org/licenses/by/4.0/
frei zugänglich
op_doi https://doi.org/10.34657/1035210.5194/tc-12-3097-2018
_version_ 1810497523008143360