Quantifying the Effects of Moisture Change on the Spectral Signatures (350-2500 nm) of Arctic Mosses, Liverworts, and Lichens

Increasing temperatures have been altering hydrological conditions and leading to ecological regime shifts across the Arctic biome, with influences on terrestrial carbon cycling. However, the sign, extent, and magnitude of change in Arctic terrestrial carbon cycling from warming is still ambiguous,...

Full description

Bibliographic Details
Main Author: Von Ness, Kate
Other Authors: Loisel, Julie, Filippi, Anthony, West, Jason
Format: Thesis
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/1969.1/195639
id fttexasamuniv:oai:oaktrust.library.tamu.edu:1969.1/195639
record_format openpolar
spelling fttexasamuniv:oai:oaktrust.library.tamu.edu:1969.1/195639 2023-07-16T03:56:01+02:00 Quantifying the Effects of Moisture Change on the Spectral Signatures (350-2500 nm) of Arctic Mosses, Liverworts, and Lichens Von Ness, Kate Loisel, Julie Filippi, Anthony West, Jason 2022-02-23T18:03:48Z application/pdf https://hdl.handle.net/1969.1/195639 en eng https://hdl.handle.net/1969.1/195639 Arctic vegetation wetlands mosses lichens liverworts bryophytes moisture remote sensing spectral signatures Thesis text 2022 fttexasamuniv 2023-06-27T22:30:31Z Increasing temperatures have been altering hydrological conditions and leading to ecological regime shifts across the Arctic biome, with influences on terrestrial carbon cycling. However, the sign, extent, and magnitude of change in Arctic terrestrial carbon cycling from warming is still ambiguous, especially in wetlands and peatlands. Non-vascular vegetation (specifically bryophytes and lichens), which can tolerate low light, extreme cold, desiccation, and waterlogged conditions, are dominant vegetation components in high-latitude ecosystems. As such, they have significant ecological roles in moderating soil temperature and moisture, water flow/retention, nutrient availability, and carbon storage. However, despite their importance and dominance in northern ecosystems, they are still severely neglected or inadequately represented in most Earth System Models. Remote sensing, being quick and cost-effective, is a popular tool to monitor inaccessible Arctic environments. While the spectral properties of low-latitude vascular vegetation have been of large focus, few have looked at the spectral responses of (sub-)Arctic mosses, lichens, and liverworts, especially how they change with moisture shifts. Using lab water table depth manipulations to simulate shifts from desiccation (0% moisture) to saturation (100% moisture), this project quantified the effects of moisture change on the hyperspectral signatures (350-2500nm) of Arctic mosses, lichens, and liverworts. Results show that spectral properties vary widely across species and plant types, especially in the VIS and NIR. As moisture was lost, species showed similar patterns in spectral response (primarily in SWIR), with a general increase in reflectance and similar changes in shape; all species developed new peaks and rises in reflectance in SWIR1 and SWIR2 after reaching a certain desiccation point. Furthermore, below 20 to 30% moisture, species eventually became spectrally indistinguishable in the SWIR. Overall, the unique spectral properties in the VIS and NIR can ... Thesis Arctic Texas A&M University Digital Repository Arctic
institution Open Polar
collection Texas A&M University Digital Repository
op_collection_id fttexasamuniv
language English
topic Arctic
vegetation
wetlands
mosses
lichens
liverworts
bryophytes
moisture
remote sensing
spectral signatures
spellingShingle Arctic
vegetation
wetlands
mosses
lichens
liverworts
bryophytes
moisture
remote sensing
spectral signatures
Von Ness, Kate
Quantifying the Effects of Moisture Change on the Spectral Signatures (350-2500 nm) of Arctic Mosses, Liverworts, and Lichens
topic_facet Arctic
vegetation
wetlands
mosses
lichens
liverworts
bryophytes
moisture
remote sensing
spectral signatures
description Increasing temperatures have been altering hydrological conditions and leading to ecological regime shifts across the Arctic biome, with influences on terrestrial carbon cycling. However, the sign, extent, and magnitude of change in Arctic terrestrial carbon cycling from warming is still ambiguous, especially in wetlands and peatlands. Non-vascular vegetation (specifically bryophytes and lichens), which can tolerate low light, extreme cold, desiccation, and waterlogged conditions, are dominant vegetation components in high-latitude ecosystems. As such, they have significant ecological roles in moderating soil temperature and moisture, water flow/retention, nutrient availability, and carbon storage. However, despite their importance and dominance in northern ecosystems, they are still severely neglected or inadequately represented in most Earth System Models. Remote sensing, being quick and cost-effective, is a popular tool to monitor inaccessible Arctic environments. While the spectral properties of low-latitude vascular vegetation have been of large focus, few have looked at the spectral responses of (sub-)Arctic mosses, lichens, and liverworts, especially how they change with moisture shifts. Using lab water table depth manipulations to simulate shifts from desiccation (0% moisture) to saturation (100% moisture), this project quantified the effects of moisture change on the hyperspectral signatures (350-2500nm) of Arctic mosses, lichens, and liverworts. Results show that spectral properties vary widely across species and plant types, especially in the VIS and NIR. As moisture was lost, species showed similar patterns in spectral response (primarily in SWIR), with a general increase in reflectance and similar changes in shape; all species developed new peaks and rises in reflectance in SWIR1 and SWIR2 after reaching a certain desiccation point. Furthermore, below 20 to 30% moisture, species eventually became spectrally indistinguishable in the SWIR. Overall, the unique spectral properties in the VIS and NIR can ...
author2 Loisel, Julie
Filippi, Anthony
West, Jason
format Thesis
author Von Ness, Kate
author_facet Von Ness, Kate
author_sort Von Ness, Kate
title Quantifying the Effects of Moisture Change on the Spectral Signatures (350-2500 nm) of Arctic Mosses, Liverworts, and Lichens
title_short Quantifying the Effects of Moisture Change on the Spectral Signatures (350-2500 nm) of Arctic Mosses, Liverworts, and Lichens
title_full Quantifying the Effects of Moisture Change on the Spectral Signatures (350-2500 nm) of Arctic Mosses, Liverworts, and Lichens
title_fullStr Quantifying the Effects of Moisture Change on the Spectral Signatures (350-2500 nm) of Arctic Mosses, Liverworts, and Lichens
title_full_unstemmed Quantifying the Effects of Moisture Change on the Spectral Signatures (350-2500 nm) of Arctic Mosses, Liverworts, and Lichens
title_sort quantifying the effects of moisture change on the spectral signatures (350-2500 nm) of arctic mosses, liverworts, and lichens
publishDate 2022
url https://hdl.handle.net/1969.1/195639
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_relation https://hdl.handle.net/1969.1/195639
_version_ 1771542123065114624