When Overturning Circulation Became Global: Insight into Its Timing from Neodymium Isotopes of Fossil Fish Teeth/Debris and Ferromanganese Oxyhydroxide Coatings in the Pacific Ocean

Reconstructions of overturning circulation from IODP Sites covering 40-65 Ma indicate a fundamentally different overturning mode (referred to herein as the Paleogene mode) compared to the modern. Significantly different global climate and plate tectonic boundary conditions during this time interval...

Full description

Bibliographic Details
Main Author: Cobb, Ty D
Other Authors: Thomas, Deborah J, Bogus, Kara A, Slowey, Niall
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/1969.1/174763
id fttexasamuniv:oai:oaktrust.library.tamu.edu:1969.1/174763
record_format openpolar
spelling fttexasamuniv:oai:oaktrust.library.tamu.edu:1969.1/174763 2023-07-16T03:52:30+02:00 When Overturning Circulation Became Global: Insight into Its Timing from Neodymium Isotopes of Fossil Fish Teeth/Debris and Ferromanganese Oxyhydroxide Coatings in the Pacific Ocean Cobb, Ty D Thomas, Deborah J Bogus, Kara A Slowey, Niall 2019-02-15T21:30:23Z application/pdf https://hdl.handle.net/1969.1/174763 en eng https://hdl.handle.net/1969.1/174763 Paleoceanography Neodymium Deep-water circulation Pacific Ocean Geochemistry Oceanography IODP Neogene Climate Thesis text 2019 fttexasamuniv 2023-06-27T22:10:31Z Reconstructions of overturning circulation from IODP Sites covering 40-65 Ma indicate a fundamentally different overturning mode (referred to herein as the Paleogene mode) compared to the modern. Significantly different global climate and plate tectonic boundary conditions during this time interval likely contributed to the different mode of overturning circulation in which each major basin was characterized by distinct and restricted overturning circulations. The modern mode more closely resembles one large continuous Global Overturning Circulation. Here, new Nd isotope data from IODP Site U1438 spanning 27 Ma to the present are used to investigate the timing of the transition from the Paleogene mode to the modern mode. Site U1438 is situated at 4720 m water depth and is ideal to record relative contributions of deep-water masses from the North Pacific and those sourced from the Pacific sector of the Southern Ocean (e.g., Antarctic Bottom Water). The Nd isotopic record collected at U1438 reflects that the shift from the Paleogene mode to the modern mode occurred by 14 Ma, coinciding with the large shift in climate from a relatively warm world to a gradually cooling world that was established by the end of the MMCO. However, the data suggest that at least some part (e.g., 14.8 Ma) of the water mass composition recorded at Site U1438 may have been overprinted by other contributions of dissolved Nd. Given its proximity to contemporaneous volcanic inputs, it is likely that relatively labile volcaniclastic materials partially dissolving at the seafloor and within pore waters potentially affected the εNd composition. This study highlights the need to thoroughly characterize the potential inputs of dissolved Nd to a given location before incorporating a new Nd isotope record into the reconstruction of global deep-water circulation. Thesis Antarc* Antarctic Southern Ocean Texas A&M University Digital Repository Antarctic Southern Ocean Pacific
institution Open Polar
collection Texas A&M University Digital Repository
op_collection_id fttexasamuniv
language English
topic Paleoceanography
Neodymium
Deep-water circulation
Pacific Ocean
Geochemistry
Oceanography
IODP
Neogene Climate
spellingShingle Paleoceanography
Neodymium
Deep-water circulation
Pacific Ocean
Geochemistry
Oceanography
IODP
Neogene Climate
Cobb, Ty D
When Overturning Circulation Became Global: Insight into Its Timing from Neodymium Isotopes of Fossil Fish Teeth/Debris and Ferromanganese Oxyhydroxide Coatings in the Pacific Ocean
topic_facet Paleoceanography
Neodymium
Deep-water circulation
Pacific Ocean
Geochemistry
Oceanography
IODP
Neogene Climate
description Reconstructions of overturning circulation from IODP Sites covering 40-65 Ma indicate a fundamentally different overturning mode (referred to herein as the Paleogene mode) compared to the modern. Significantly different global climate and plate tectonic boundary conditions during this time interval likely contributed to the different mode of overturning circulation in which each major basin was characterized by distinct and restricted overturning circulations. The modern mode more closely resembles one large continuous Global Overturning Circulation. Here, new Nd isotope data from IODP Site U1438 spanning 27 Ma to the present are used to investigate the timing of the transition from the Paleogene mode to the modern mode. Site U1438 is situated at 4720 m water depth and is ideal to record relative contributions of deep-water masses from the North Pacific and those sourced from the Pacific sector of the Southern Ocean (e.g., Antarctic Bottom Water). The Nd isotopic record collected at U1438 reflects that the shift from the Paleogene mode to the modern mode occurred by 14 Ma, coinciding with the large shift in climate from a relatively warm world to a gradually cooling world that was established by the end of the MMCO. However, the data suggest that at least some part (e.g., 14.8 Ma) of the water mass composition recorded at Site U1438 may have been overprinted by other contributions of dissolved Nd. Given its proximity to contemporaneous volcanic inputs, it is likely that relatively labile volcaniclastic materials partially dissolving at the seafloor and within pore waters potentially affected the εNd composition. This study highlights the need to thoroughly characterize the potential inputs of dissolved Nd to a given location before incorporating a new Nd isotope record into the reconstruction of global deep-water circulation.
author2 Thomas, Deborah J
Bogus, Kara A
Slowey, Niall
format Thesis
author Cobb, Ty D
author_facet Cobb, Ty D
author_sort Cobb, Ty D
title When Overturning Circulation Became Global: Insight into Its Timing from Neodymium Isotopes of Fossil Fish Teeth/Debris and Ferromanganese Oxyhydroxide Coatings in the Pacific Ocean
title_short When Overturning Circulation Became Global: Insight into Its Timing from Neodymium Isotopes of Fossil Fish Teeth/Debris and Ferromanganese Oxyhydroxide Coatings in the Pacific Ocean
title_full When Overturning Circulation Became Global: Insight into Its Timing from Neodymium Isotopes of Fossil Fish Teeth/Debris and Ferromanganese Oxyhydroxide Coatings in the Pacific Ocean
title_fullStr When Overturning Circulation Became Global: Insight into Its Timing from Neodymium Isotopes of Fossil Fish Teeth/Debris and Ferromanganese Oxyhydroxide Coatings in the Pacific Ocean
title_full_unstemmed When Overturning Circulation Became Global: Insight into Its Timing from Neodymium Isotopes of Fossil Fish Teeth/Debris and Ferromanganese Oxyhydroxide Coatings in the Pacific Ocean
title_sort when overturning circulation became global: insight into its timing from neodymium isotopes of fossil fish teeth/debris and ferromanganese oxyhydroxide coatings in the pacific ocean
publishDate 2019
url https://hdl.handle.net/1969.1/174763
geographic Antarctic
Southern Ocean
Pacific
geographic_facet Antarctic
Southern Ocean
Pacific
genre Antarc*
Antarctic
Southern Ocean
genre_facet Antarc*
Antarctic
Southern Ocean
op_relation https://hdl.handle.net/1969.1/174763
_version_ 1771545926938132480