探討Notch ligand Delta4對樹突狀細胞的影響與應用於氣喘之研究
謝誌 4 中文摘要 6 英文摘要 8 縮寫對照表 10 第一章 序論 12 (一)Notch的介紹 13 (二)Notch及Notch ligand的組成 14 (三)Notch的訊息傳遞 15 (四)Notch對樹突狀細胞分化的影響 15 (五)Notch對T細胞分化的影響 17 (六)氣喘疾病的發生 20 (七)細胞激素在氣喘中扮演之角色 21 (八)樹突狀細胞於氣喘反應之角色 22 (九)氣喘的治療 23 第二章 研究動機與目的 25 第三章 探討重組蛋白rmDelta4對樹突狀細胞活化之影響以及是否可藉由此修飾後之樹突狀細胞調控CD4+ T細胞之分化 28 (一)實驗目的與原理 29...
Main Author: | |
---|---|
Other Authors: | |
Language: | Chinese English |
Published: |
2010
|
Subjects: | |
Online Access: | http://libir.tmu.edu.tw/handle/987654321/36417 |
id |
fttaipeimedu:oai:localhost:987654321/36417 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Taipei Medical University Repository (TMUR) |
op_collection_id |
fttaipeimedu |
language |
Chinese English |
topic |
樹突狀細胞 |
spellingShingle |
樹突狀細胞 林鉅倫 探討Notch ligand Delta4對樹突狀細胞的影響與應用於氣喘之研究 |
topic_facet |
樹突狀細胞 |
description |
謝誌 4 中文摘要 6 英文摘要 8 縮寫對照表 10 第一章 序論 12 (一)Notch的介紹 13 (二)Notch及Notch ligand的組成 14 (三)Notch的訊息傳遞 15 (四)Notch對樹突狀細胞分化的影響 15 (五)Notch對T細胞分化的影響 17 (六)氣喘疾病的發生 20 (七)細胞激素在氣喘中扮演之角色 21 (八)樹突狀細胞於氣喘反應之角色 22 (九)氣喘的治療 23 第二章 研究動機與目的 25 第三章 探討重組蛋白rmDelta4對樹突狀細胞活化之影響以及是否可藉由此修飾後之樹突狀細胞調控CD4+ T細胞之分化 28 (一)實驗目的與原理 29 (二)實驗材料與方法 30 (三)研究結果 37 第四章 探討經重組蛋白rmDelta4刺激後之樹突狀細胞在氣喘動物模式中的預防效果 41 (一)實驗目的與原理 42 (二)實驗材料與方法 43 (三)研究結果 48 第五章 討論 51 第六章 結論與未來方向 56 圖 59 參考文獻 69 Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S. 1985. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43: 567-81 2. Tsukumo S, Yasutomo K. 2004. Notch governing mature T cell differentiation. J Immunol 173: 7109-13 3. Cheng P, Nefedova Y, Corzo CA, Gabrilovich DI. 2007. Regulation of dendritic-cell differentiation by bone marrow stroma via different Notch ligands. Blood 109: 507-15 4. Fiuza UM, Arias AM. 2007. Cell and molecular biology of Notch. J Endocrinol 194: 459-74 5. Maillard I, Adler SH, Pear WS. 2003. Notch and the immune system. Immunity 19: 781-91 6. Maillard I, Fang T, Pear WS. 2005. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol 23: 945-74 7. Kojika S, Griffin JD. 2001. Notch receptors and hematopoiesis. Exp Hematol 29: 1041-52 8. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. 2004. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117: 515-26 9. Hoyne GF, Le Roux I, Corsin-Jimenez M, Tan K, Dunne J, Forsyth LM, Dallman MJ, Owen MJ, Ish-Horowicz D, Lamb JR. 2000. Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4(+) T cells. Int Immunol 12: 177-85 10. Wong KK, Carpenter MJ, Young LL, Walker SJ, McKenzie G, Rust AJ, Ward G, Packwood L, Wahl K, Delriviere L, Hoyne G, Gibbs P, Champion BR, Lamb JR, Dallman MJ. 2003. Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J Clin Invest 112: 1741-50 11. Cheng P, Gabrilovich D. 2008. Notch signaling in differentiation and function of dendritic cells. Immunol Res 41: 1-14 12. Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y, Hirai H. 1999. Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem 274: 32961-9 13. Parks AL, Stout JR, Shepard SB, Klueg KM, Dos Santos AA, Parody TR, Vaskova M, Muskavitch MA. 2006. Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila. Genetics 174: 1947-61 14. Vitt UA, Hsu SY, Hsueh AJ. 2001. Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules. Mol Endocrinol 15: 681-94 15. Pintar A, De Biasio A, Popovic M, Ivanova N, Pongor S. 2007. The intracellular region of Notch ligands: does the tail make the difference? Biol Direct 2: 19 16. Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George-Hyslop P. 2000. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407: 48-54 17. Amsen D, Antov A, Jankovic D, Sher A, Radtke F, Souabni A, Busslinger M, McCright B, Gridley T, Flavell RA. 2007. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27: 89-99 18. Minter LM, Turley DM, Das P, Shin HM, Joshi I, Lawlor RG, Cho OH, Palaga T, Gottipati S, Telfer JC, Kostura L, Fauq AH, Simpson K, Such KA, Miele L, Golde TE, Miller SD, Osborne BA. 2005. Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol 6: 680-8 19. Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K. 2001. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97: 3333-41 20. Akashi K, Traver D, Miyamoto T, Weissman IL. 2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404: 193-7 21. Cheng P, Zlobin A, Volgina V, Gottipati S, Osborne B, Simel EJ, Miele L, Gabrilovich DI. 2001. Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. J Immunol 167: 4458-67 22. Petrasch S, Reinacher-Schick A, Busemann B, Radtke J, Philippou S, Dorr T, Kemmeries G, Eufinger H, Schmiegel W. 2000. Neoadjuvant, hyperfractionated irradiation induces apoptosis and decreases proliferation in squamous cell cancer of the oral cavity. Int J Oral Maxillofac Surg 29: 285-9 23. Caton ML, Smith-Raska MR, Reizis B. 2007. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med 204: 1653-64 24. Sekine C, Moriyama Y, Koyanagi A, Koyama N, Ogata H, Okumura K, Yagita H. 2009. Differential regulation of splenic CD8- dendritic cells and marginal zone B cells by Notch ligands. Int Immunol 21: 295-301 25. Ohishi K, Varnum-Finney B, Serda RE, Anasetti C, Bernstein ID. 2001. The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood 98: 1402-7 26. Kuipers H, Heirman C, Hijdra D, Muskens F, Willart M, van Meirvenne S, Thielemans K, Hoogsteden HC, Lambrecht BN. 2004. Dendritic cells retrovirally overexpressing IL-12 induce strong Th1 responses to inhaled antigen in the lung but fail to revert established Th2 sensitization. J Leukoc Biol 76: 1028-38 27. Weaver CT, Hatton RD, Mangan PR, Harrington LE. 2007. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25: 821-52 28. Abbas AK, Murphy KM, Sher A. 1996. Functional diversity of helper T lymphocytes. Nature 383: 787-93 29. Guo P, Hirano M, Herrin BR, Li J, Yu C, Sadlonova A, Cooper MD. 2009. Dual nature of the adaptive immune system in lampreys. Nature 459: 796-801 30. Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP. 2006. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300: 349-65 31. Roberts S, Gueguen Y, de Lorgeril J, Goetz F. 2008. Rapid accumulation of an interleukin 17 homolog transcript in Crassostrea gigas hemocytes following bacterial exposure. Dev Comp Immunol 32: 1099-104 32. Wood KJ, Sakaguchi S. 2003. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3: 199-210 33. Sakaguchi S. 2005. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6: 345-52 34. Stock P, Akbari O, Berry G, Freeman GJ, Dekruyff RH, Umetsu DT. 2004. Induction of T helper type 1-like regulatory cells that express Foxp3 and protect against airway hyper-reactivity. Nat Immunol 5: 1149-56 35. Larche M. 2007. Regulatory T cells in allergy and asthma. Chest 132: 1007-14 36. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. 2001. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2: 947-50 37. Kapsenberg ML. 2003. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3: 984-93 38. Hsu CY, Leu SJ, Chiang BL, Liu HE, Su HC, Lee YL. 2010. Cytokine gene-modulated dendritic cells protect against allergic airway inflammation by inducing IL-10(+)IFN-gamma(+)CD4(+) T cells. Gene Ther 39. Sun J, Krawczyk CJ, Pearce EJ. 2008. Suppression of Th2 cell development by Notch ligands Delta1 and Delta4. J Immunol 180: 1655-61 40. Skokos D, Nussenzweig MC. 2007. CD8- DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS. J Exp Med 204: 1525-31 41. Vigouroux S, Yvon E, Wagner HJ, Biagi E, Dotti G, Sili U, Lira C, Rooney CM, Brenner MK. 2003. Induction of antigen-specific regulatory T cells following overexpression of a Notch ligand by human B lymphocytes. J Virol 77: 10872-80 42. Yvon ES, Vigouroux S, Rousseau RF, Biagi E, Amrolia P, Dotti G, Wagner HJ, Brenner MK. 2003. Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells. Blood 102: 3815-21 43. Hammad H, Lambrecht BN. 2008. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8: 193-204 44. Nadel JA, Busse WW. 1998. Asthma. Am J Respir Crit Care Med 157: S130-8 45. Cohn L, Homer RJ, Marinov A, Rankin J, Bottomly K. 1997. Induction of airway mucus production By T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J Exp Med 186: 1737-47 46. Brusselle GG, Kips JC, Tavernier JH, van der Heyden JG, Cuvelier CA, Pauwels RA, Bluethmann H. 1994. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy 24: 73-80 47. Coyle AJ, Le Gros G, Bertrand C, Tsuyuki S, Heusser CH, Kopf M, Anderson GP. 1995. Interleukin-4 is required for the induction of lung Th2 mucosal immunity. Am J Respir Cell Mol Biol 13: 54-9 48. Swain SL, Weinberg AD, English M, Huston G. 1990. IL-4 directs the development of Th2-like helper effectors. J Immunol 145: 3796-806 49. Hasbold J, Lyons AB, Kehry MR, Hodgkin PD. 1998. Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. Eur J Immunol 28: 1040-51 50. Schleimer RP, Sterbinsky SA, Kaiser J, Bickel CA, Klunk DA, Tomioka K, Newman W, Luscinskas FW, Gimbrone MA, Jr., McIntyre BW, et al. 1992. IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol 148: 1086-92 51. Dent LA, Strath M, Mellor AL, Sanderson CJ. 1990. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 172: 1425-31 52. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. 1996. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183: 195-201 53. Akutsu I, Kojima T, Kariyone A, Fukuda T, Makino S, Takatsu K. 1995. Antibody against interleukin-5 prevents antigen-induced eosinophil infiltration and bronchial hyperreactivity in the guinea pig airways. Immunol Lett 45: 109-16 54. Mould AW, Matthaei KI, Young IG, Foster PS. 1997. Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J Clin Invest 99: 1064-71 55. Shirakawa I, Deichmann KA, Izuhara I, Mao I, Adra CN, Hopkin JM. 2000. Atopy and asthma: genetic variants of IL-4 and IL-13 signalling. Immunol Today 21: 60-4 56. Corry DB. 1999. IL-13 in allergy: home at last. Curr Opin Immunol 11: 610-4 57. Li L, Xia Y, Nguyen A, Lai YH, Feng L, Mosmann TR, Lo D. 1999. Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J Immunol 162: 2477-87 58. Lambrecht BN, De Veerman M, Coyle AJ, Gutierrez-Ramos JC, Thielemans K, Pauwels RA. 2000. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest 106: 551-9 59. Sung S, Rose CE, Fu SM. 2001. Intratracheal priming with ovalbumin- and ovalbumin 323-339 peptide-pulsed dendritic cells induces airway hyperresponsiveness, lung eosinophilia, goblet cell hyperplasia, and inflammation. J Immunol 166: 1261-71 60. Chiang DJ, Ye YL, Chen WL, Lee YL, Hsu NY, Chiang BL. 2003. Ribavirin or CpG DNA sequence-modulated dendritic cells decrease the IgE level and airway inflammation. Am J Respir Crit Care Med 168: 575-80 61. Chuang YH, Suen JL, Chiang BL. 2006. Fas-ligand-expressing adenovirus-transfected dendritic cells decrease allergen-specific T cells and airway inflammation in a murine model of asthma. J Mol Med 84: 595-603 62. Oh JW, Seroogy CM, Meyer EH, Akbari O, Berry G, Fathman CG, Dekruyff RH, Umetsu DT. 2002. CD4 T-helper cells engineered to produce IL-10 prevent allergen-induced airway hyperreactivity and inflammation. J Allergy Clin Immunol 110: 460-8 63. Lee Y, Fu C, Chiang B. 1999. Administration of interleukin-12 exerts a therapeutic instead of a long-term preventive effect on mite Der p I allergen-induced animal model of airway inflammation. Immunology 97: 232-40 64. Kurup VP, Murali PS, Guo J, Choi H, Banerjee B, Fink JN, Coffman RL. 1997. Anti-interleukin (IL)-4 and -IL-5 antibodies downregulate IgE and eosinophilia in mice exposed to Aspergillus antigens. Allergy 52: 1215-21 65. Poole JA, Matangkasombut P, Rosenwasser LJ. 2005. Targeting the IgE molecule in allergic and asthmatic diseases: review of the IgE molecule and clinical efficacy. J Allergy Clin Immunol 115: S376-85 66. Lutz MB, Schuler G. 2002. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23: 445-9 67. Fu BM, He XS, Yu S, Hu AB, Ma Y, Wu LW, Tam NL, Huang JF. 2009. Tolerogenic semimature dendritic cells induce effector T-cell hyporesponsiveness by the activation of antigen-specific CD4+ CD25+ T-regulatory cells. Exp Clin Transplant 7: 149-56 68. Liu Y-L. 2009. The immuno-modulatory effects of Notch ligand Delta4 in the induction of immune cells activation and differentiation 69. Blaser K, Akdis CA. 2004. Interleukin-10, T regulatory cells and specific allergy treatment. Clin Exp Allergy 34: 328-31 70. Hawrylowicz CM, O'Garra A. 2005. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 5: 271-83 71. Levine BB, Vaz NM. 1970. Effect of combinations of inbred strain, antigen, and antigen dose on immune responsiveness and reagin production in the mouse. A potential mouse model for immune aspects of human atopic allergy. Int Arch Allergy Appl Immunol 39: 156-71 72. Yamanishi R, Yusa I, Bando N, Terao J. 2003. Adjuvant activity of alum in inducing antigen specific IgE antibodies in BALB/c mice: a reevaluation. Biosci Biotechnol Biochem 67: 166-9 73. Busse WW, Lemanske RF, Jr. 2001. Asthma. N Engl J Med 344: 350-62 74. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. 2000. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192: 1213-22 75. Fu CL, Ye YL, Lee YL, Chiang BL. 2006. Effects of overexpression of IL-10, IL-12, TGF-beta and IL-4 on allergen induced change in bronchial responsiveness. Respir Res 7: 72 Notch訊息可維持細胞增生、分化及凋亡間的平衡,影響許多器官的發育和功能,在生物體中扮演著很重要的角色。樹突細胞為抗原呈獻細胞的一種,在抗原刺激後會促進T細胞的活化及naïve CD4+ T細胞的分化。一般認為Notch ligands中的Delta4跟抗原呈獻細胞衍生的Th1細胞分化有關,但Nocth訊息中複雜的交互作用,以及在樹突細胞的發育及分化、還有T細胞的活化與Th細胞的分化仍尚未完全明白。在本實驗中,我們假設Delta4對於調控樹突狀細胞的活化及功能扮有很重要的角色。體外實驗中可以觀察到,若在樹突狀細胞發育的過程中給予Delta4刺激會造成樹突狀細胞表面分子MHC class Ⅱ的表現量下降但CD80及CD86的表現量則有上升的情形。另外,我們也觀察到這種經Delta4修飾過後的樹突狀細胞分泌細胞激素IL-10、IL-12、IL-23及IL-27與前發炎激素IL-1β、IL-6及TNF-α皆有下降的情形,因此我們推測這一種樹突狀細胞為一種半成熟的樹突狀細胞。另外,將這群修飾後的樹突狀細胞與T細胞共培養,我們觀察到T細胞的增生情形會被抑制,同時細胞激素IL-5及IFN-γ的分泌量也會減少。此外,我們進一步探討在氣喘動物模式下給予經Delta4作用後的樹突狀細胞是否能預防氣喘疾病的發生。由實驗結果發現,經由Delta4作用的樹突狀細胞能降低OVA專一性的IgE抗體的產生,同時減少氣管呼吸道阻力、肺部發炎細胞浸潤及細胞激素的產生。綜合以上所述,我們推測這一群經由Delta4刺激後的樹突狀細胞確實能有效的降低氣喘的發炎反應,因此未來或許可利用此修飾的樹突狀細胞來進行氣喘的治療。 The Notch pathway participates in cell proliferation, differentiation, and apoptosis processes that affects the development and function in various organs. Dendritic cells (DCs), as professional antigen presenting cells (APCs), induce T cell activation and promote T cells differentiation by antigen stimulation. It is known that Delta4 on APCs is associated with the stimulation of Th1-type response. However, the regulation of activation and differentiation in DCs and T cells by Delta4 remains unclear. In this study, we firstly investigated whether Delta4 played an immune-modulatory role in the activation and function of DCs in vitro. The DCs were treated with Delta4 during cells development and show low levels of MHC class Ⅱ but high level of CD80 and CD86 expression in Delta4-treated DCs. These modified DCs might be semi-mature form of DCs because they expressed low level of cytokines such as IL-12,IL-23,IL-27,IL-1β,IL-6,IL-10 and TNF-α. In addition, these Delta4-treated DCs not only inhibited the proliferation of T cells, but also reduced the production of IL-5 and IFN-γ of activated T cells. Furthermore, these modified DCs was applied to examine the preventive effects in established asthmatic animal model. In here, we showed that these modified DCs efficently moderated the characteristics of asthma, including expression of OVA-specific IgE antibody, airway hyper-responsiveness, eosinophilic airway inflammation, and cytokine production. Taken together, these results suggest that Delta4-modulated DCs are effective in suppressing asthmatic airway inflammation and are a potential therapeutic tool for asthma. |
author2 |
醫學科學研究所 |
author |
林鉅倫 |
author_facet |
林鉅倫 |
author_sort |
林鉅倫 |
title |
探討Notch ligand Delta4對樹突狀細胞的影響與應用於氣喘之研究 |
title_short |
探討Notch ligand Delta4對樹突狀細胞的影響與應用於氣喘之研究 |
title_full |
探討Notch ligand Delta4對樹突狀細胞的影響與應用於氣喘之研究 |
title_fullStr |
探討Notch ligand Delta4對樹突狀細胞的影響與應用於氣喘之研究 |
title_full_unstemmed |
探討Notch ligand Delta4對樹突狀細胞的影響與應用於氣喘之研究 |
title_sort |
探討notch ligand delta4對樹突狀細胞的影響與應用於氣喘之研究 |
publishDate |
2010 |
url |
http://libir.tmu.edu.tw/handle/987654321/36417 |
long_lat |
ENVELOPE(140.050,140.050,-66.649,-66.649) ENVELOPE(-153.833,-153.833,-86.967,-86.967) ENVELOPE(-84.767,-84.767,-78.617,-78.617) ENVELOPE(-58.733,-58.733,-62.233,-62.233) ENVELOPE(67.217,67.217,-70.544,-70.544) ENVELOPE(-153.000,-153.000,-87.283,-87.283) ENVELOPE(-59.700,-59.700,-62.500,-62.500) ENVELOPE(-59.617,-59.617,-62.500,-62.500) ENVELOPE(167.217,167.217,-77.483,-77.483) ENVELOPE(163.933,163.933,-84.967,-84.967) ENVELOPE(-65.683,-65.683,-65.967,-65.967) ENVELOPE(-44.733,-44.733,-60.733,-60.733) ENVELOPE(-67.077,-67.077,-68.514,-68.514) ENVELOPE(-114.944,-114.944,60.714,60.714) ENVELOPE(157.817,157.817,-81.050,-81.050) ENVELOPE(162.650,162.650,-77.967,-77.967) ENVELOPE(163.100,163.100,-71.067,-71.067) ENVELOPE(48.900,48.900,-67.867,-67.867) ENVELOPE(70.283,70.283,-49.350,-49.350) ENVELOPE(-57.583,-57.583,-63.700,-63.700) ENVELOPE(31.909,31.909,67.119,67.119) ENVELOPE(161.400,161.400,-77.900,-77.900) ENVELOPE(-178.417,-178.417,-80.250,-80.250) ENVELOPE(140.050,140.050,-66.649,-66.649) |
geographic |
Dent Weaver Osborne Barton Johansen McIntyre Ramos Rousseau Fang Buckley Jagged Ramsay Bertrand Mellor Wharton Chiang Janus Lira Yvon Corry Kanda Kuipers Brockton Dent La |
geographic_facet |
Dent Weaver Osborne Barton Johansen McIntyre Ramos Rousseau Fang Buckley Jagged Ramsay Bertrand Mellor Wharton Chiang Janus Lira Yvon Corry Kanda Kuipers Brockton Dent La |
genre |
Crassostrea gigas Mite |
genre_facet |
Crassostrea gigas Mite |
op_relation |
74頁 http://libir.tmu.edu.tw/handle/987654321/36417 |
_version_ |
1766395060545388544 |
spelling |
fttaipeimedu:oai:localhost:987654321/36417 2023-05-15T15:59:15+02:00 探討Notch ligand Delta4對樹突狀細胞的影響與應用於氣喘之研究 林鉅倫 醫學科學研究所 2010 http://libir.tmu.edu.tw/handle/987654321/36417 zh_TW en_US chi eng 74頁 http://libir.tmu.edu.tw/handle/987654321/36417 樹突狀細胞 2010 fttaipeimedu 2022-02-27T08:06:04Z 謝誌 4 中文摘要 6 英文摘要 8 縮寫對照表 10 第一章 序論 12 (一)Notch的介紹 13 (二)Notch及Notch ligand的組成 14 (三)Notch的訊息傳遞 15 (四)Notch對樹突狀細胞分化的影響 15 (五)Notch對T細胞分化的影響 17 (六)氣喘疾病的發生 20 (七)細胞激素在氣喘中扮演之角色 21 (八)樹突狀細胞於氣喘反應之角色 22 (九)氣喘的治療 23 第二章 研究動機與目的 25 第三章 探討重組蛋白rmDelta4對樹突狀細胞活化之影響以及是否可藉由此修飾後之樹突狀細胞調控CD4+ T細胞之分化 28 (一)實驗目的與原理 29 (二)實驗材料與方法 30 (三)研究結果 37 第四章 探討經重組蛋白rmDelta4刺激後之樹突狀細胞在氣喘動物模式中的預防效果 41 (一)實驗目的與原理 42 (二)實驗材料與方法 43 (三)研究結果 48 第五章 討論 51 第六章 結論與未來方向 56 圖 59 參考文獻 69 Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S. 1985. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43: 567-81 2. Tsukumo S, Yasutomo K. 2004. Notch governing mature T cell differentiation. J Immunol 173: 7109-13 3. Cheng P, Nefedova Y, Corzo CA, Gabrilovich DI. 2007. Regulation of dendritic-cell differentiation by bone marrow stroma via different Notch ligands. Blood 109: 507-15 4. Fiuza UM, Arias AM. 2007. Cell and molecular biology of Notch. J Endocrinol 194: 459-74 5. Maillard I, Adler SH, Pear WS. 2003. Notch and the immune system. Immunity 19: 781-91 6. Maillard I, Fang T, Pear WS. 2005. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol 23: 945-74 7. Kojika S, Griffin JD. 2001. Notch receptors and hematopoiesis. Exp Hematol 29: 1041-52 8. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. 2004. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117: 515-26 9. Hoyne GF, Le Roux I, Corsin-Jimenez M, Tan K, Dunne J, Forsyth LM, Dallman MJ, Owen MJ, Ish-Horowicz D, Lamb JR. 2000. Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4(+) T cells. Int Immunol 12: 177-85 10. Wong KK, Carpenter MJ, Young LL, Walker SJ, McKenzie G, Rust AJ, Ward G, Packwood L, Wahl K, Delriviere L, Hoyne G, Gibbs P, Champion BR, Lamb JR, Dallman MJ. 2003. Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J Clin Invest 112: 1741-50 11. Cheng P, Gabrilovich D. 2008. Notch signaling in differentiation and function of dendritic cells. Immunol Res 41: 1-14 12. Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y, Hirai H. 1999. Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem 274: 32961-9 13. Parks AL, Stout JR, Shepard SB, Klueg KM, Dos Santos AA, Parody TR, Vaskova M, Muskavitch MA. 2006. Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila. Genetics 174: 1947-61 14. Vitt UA, Hsu SY, Hsueh AJ. 2001. Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules. Mol Endocrinol 15: 681-94 15. Pintar A, De Biasio A, Popovic M, Ivanova N, Pongor S. 2007. The intracellular region of Notch ligands: does the tail make the difference? Biol Direct 2: 19 16. Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George-Hyslop P. 2000. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407: 48-54 17. Amsen D, Antov A, Jankovic D, Sher A, Radtke F, Souabni A, Busslinger M, McCright B, Gridley T, Flavell RA. 2007. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27: 89-99 18. Minter LM, Turley DM, Das P, Shin HM, Joshi I, Lawlor RG, Cho OH, Palaga T, Gottipati S, Telfer JC, Kostura L, Fauq AH, Simpson K, Such KA, Miele L, Golde TE, Miller SD, Osborne BA. 2005. Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol 6: 680-8 19. Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K. 2001. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97: 3333-41 20. Akashi K, Traver D, Miyamoto T, Weissman IL. 2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404: 193-7 21. Cheng P, Zlobin A, Volgina V, Gottipati S, Osborne B, Simel EJ, Miele L, Gabrilovich DI. 2001. Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. J Immunol 167: 4458-67 22. Petrasch S, Reinacher-Schick A, Busemann B, Radtke J, Philippou S, Dorr T, Kemmeries G, Eufinger H, Schmiegel W. 2000. Neoadjuvant, hyperfractionated irradiation induces apoptosis and decreases proliferation in squamous cell cancer of the oral cavity. Int J Oral Maxillofac Surg 29: 285-9 23. Caton ML, Smith-Raska MR, Reizis B. 2007. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med 204: 1653-64 24. Sekine C, Moriyama Y, Koyanagi A, Koyama N, Ogata H, Okumura K, Yagita H. 2009. Differential regulation of splenic CD8- dendritic cells and marginal zone B cells by Notch ligands. Int Immunol 21: 295-301 25. Ohishi K, Varnum-Finney B, Serda RE, Anasetti C, Bernstein ID. 2001. The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood 98: 1402-7 26. Kuipers H, Heirman C, Hijdra D, Muskens F, Willart M, van Meirvenne S, Thielemans K, Hoogsteden HC, Lambrecht BN. 2004. Dendritic cells retrovirally overexpressing IL-12 induce strong Th1 responses to inhaled antigen in the lung but fail to revert established Th2 sensitization. J Leukoc Biol 76: 1028-38 27. Weaver CT, Hatton RD, Mangan PR, Harrington LE. 2007. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25: 821-52 28. Abbas AK, Murphy KM, Sher A. 1996. Functional diversity of helper T lymphocytes. Nature 383: 787-93 29. Guo P, Hirano M, Herrin BR, Li J, Yu C, Sadlonova A, Cooper MD. 2009. Dual nature of the adaptive immune system in lampreys. Nature 459: 796-801 30. Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP. 2006. The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300: 349-65 31. Roberts S, Gueguen Y, de Lorgeril J, Goetz F. 2008. Rapid accumulation of an interleukin 17 homolog transcript in Crassostrea gigas hemocytes following bacterial exposure. Dev Comp Immunol 32: 1099-104 32. Wood KJ, Sakaguchi S. 2003. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3: 199-210 33. Sakaguchi S. 2005. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6: 345-52 34. Stock P, Akbari O, Berry G, Freeman GJ, Dekruyff RH, Umetsu DT. 2004. Induction of T helper type 1-like regulatory cells that express Foxp3 and protect against airway hyper-reactivity. Nat Immunol 5: 1149-56 35. Larche M. 2007. Regulatory T cells in allergy and asthma. Chest 132: 1007-14 36. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. 2001. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2: 947-50 37. Kapsenberg ML. 2003. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3: 984-93 38. Hsu CY, Leu SJ, Chiang BL, Liu HE, Su HC, Lee YL. 2010. Cytokine gene-modulated dendritic cells protect against allergic airway inflammation by inducing IL-10(+)IFN-gamma(+)CD4(+) T cells. Gene Ther 39. Sun J, Krawczyk CJ, Pearce EJ. 2008. Suppression of Th2 cell development by Notch ligands Delta1 and Delta4. J Immunol 180: 1655-61 40. Skokos D, Nussenzweig MC. 2007. CD8- DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS. J Exp Med 204: 1525-31 41. Vigouroux S, Yvon E, Wagner HJ, Biagi E, Dotti G, Sili U, Lira C, Rooney CM, Brenner MK. 2003. Induction of antigen-specific regulatory T cells following overexpression of a Notch ligand by human B lymphocytes. J Virol 77: 10872-80 42. Yvon ES, Vigouroux S, Rousseau RF, Biagi E, Amrolia P, Dotti G, Wagner HJ, Brenner MK. 2003. Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells. Blood 102: 3815-21 43. Hammad H, Lambrecht BN. 2008. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8: 193-204 44. Nadel JA, Busse WW. 1998. Asthma. Am J Respir Crit Care Med 157: S130-8 45. Cohn L, Homer RJ, Marinov A, Rankin J, Bottomly K. 1997. Induction of airway mucus production By T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J Exp Med 186: 1737-47 46. Brusselle GG, Kips JC, Tavernier JH, van der Heyden JG, Cuvelier CA, Pauwels RA, Bluethmann H. 1994. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy 24: 73-80 47. Coyle AJ, Le Gros G, Bertrand C, Tsuyuki S, Heusser CH, Kopf M, Anderson GP. 1995. Interleukin-4 is required for the induction of lung Th2 mucosal immunity. Am J Respir Cell Mol Biol 13: 54-9 48. Swain SL, Weinberg AD, English M, Huston G. 1990. IL-4 directs the development of Th2-like helper effectors. J Immunol 145: 3796-806 49. Hasbold J, Lyons AB, Kehry MR, Hodgkin PD. 1998. Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. Eur J Immunol 28: 1040-51 50. Schleimer RP, Sterbinsky SA, Kaiser J, Bickel CA, Klunk DA, Tomioka K, Newman W, Luscinskas FW, Gimbrone MA, Jr., McIntyre BW, et al. 1992. IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol 148: 1086-92 51. Dent LA, Strath M, Mellor AL, Sanderson CJ. 1990. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 172: 1425-31 52. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. 1996. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183: 195-201 53. Akutsu I, Kojima T, Kariyone A, Fukuda T, Makino S, Takatsu K. 1995. Antibody against interleukin-5 prevents antigen-induced eosinophil infiltration and bronchial hyperreactivity in the guinea pig airways. Immunol Lett 45: 109-16 54. Mould AW, Matthaei KI, Young IG, Foster PS. 1997. Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J Clin Invest 99: 1064-71 55. Shirakawa I, Deichmann KA, Izuhara I, Mao I, Adra CN, Hopkin JM. 2000. Atopy and asthma: genetic variants of IL-4 and IL-13 signalling. Immunol Today 21: 60-4 56. Corry DB. 1999. IL-13 in allergy: home at last. Curr Opin Immunol 11: 610-4 57. Li L, Xia Y, Nguyen A, Lai YH, Feng L, Mosmann TR, Lo D. 1999. Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J Immunol 162: 2477-87 58. Lambrecht BN, De Veerman M, Coyle AJ, Gutierrez-Ramos JC, Thielemans K, Pauwels RA. 2000. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest 106: 551-9 59. Sung S, Rose CE, Fu SM. 2001. Intratracheal priming with ovalbumin- and ovalbumin 323-339 peptide-pulsed dendritic cells induces airway hyperresponsiveness, lung eosinophilia, goblet cell hyperplasia, and inflammation. J Immunol 166: 1261-71 60. Chiang DJ, Ye YL, Chen WL, Lee YL, Hsu NY, Chiang BL. 2003. Ribavirin or CpG DNA sequence-modulated dendritic cells decrease the IgE level and airway inflammation. Am J Respir Crit Care Med 168: 575-80 61. Chuang YH, Suen JL, Chiang BL. 2006. Fas-ligand-expressing adenovirus-transfected dendritic cells decrease allergen-specific T cells and airway inflammation in a murine model of asthma. J Mol Med 84: 595-603 62. Oh JW, Seroogy CM, Meyer EH, Akbari O, Berry G, Fathman CG, Dekruyff RH, Umetsu DT. 2002. CD4 T-helper cells engineered to produce IL-10 prevent allergen-induced airway hyperreactivity and inflammation. J Allergy Clin Immunol 110: 460-8 63. Lee Y, Fu C, Chiang B. 1999. Administration of interleukin-12 exerts a therapeutic instead of a long-term preventive effect on mite Der p I allergen-induced animal model of airway inflammation. Immunology 97: 232-40 64. Kurup VP, Murali PS, Guo J, Choi H, Banerjee B, Fink JN, Coffman RL. 1997. Anti-interleukin (IL)-4 and -IL-5 antibodies downregulate IgE and eosinophilia in mice exposed to Aspergillus antigens. Allergy 52: 1215-21 65. Poole JA, Matangkasombut P, Rosenwasser LJ. 2005. Targeting the IgE molecule in allergic and asthmatic diseases: review of the IgE molecule and clinical efficacy. J Allergy Clin Immunol 115: S376-85 66. Lutz MB, Schuler G. 2002. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23: 445-9 67. Fu BM, He XS, Yu S, Hu AB, Ma Y, Wu LW, Tam NL, Huang JF. 2009. Tolerogenic semimature dendritic cells induce effector T-cell hyporesponsiveness by the activation of antigen-specific CD4+ CD25+ T-regulatory cells. Exp Clin Transplant 7: 149-56 68. Liu Y-L. 2009. The immuno-modulatory effects of Notch ligand Delta4 in the induction of immune cells activation and differentiation 69. Blaser K, Akdis CA. 2004. Interleukin-10, T regulatory cells and specific allergy treatment. Clin Exp Allergy 34: 328-31 70. Hawrylowicz CM, O'Garra A. 2005. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 5: 271-83 71. Levine BB, Vaz NM. 1970. Effect of combinations of inbred strain, antigen, and antigen dose on immune responsiveness and reagin production in the mouse. A potential mouse model for immune aspects of human atopic allergy. Int Arch Allergy Appl Immunol 39: 156-71 72. Yamanishi R, Yusa I, Bando N, Terao J. 2003. Adjuvant activity of alum in inducing antigen specific IgE antibodies in BALB/c mice: a reevaluation. Biosci Biotechnol Biochem 67: 166-9 73. Busse WW, Lemanske RF, Jr. 2001. Asthma. N Engl J Med 344: 350-62 74. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. 2000. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192: 1213-22 75. Fu CL, Ye YL, Lee YL, Chiang BL. 2006. Effects of overexpression of IL-10, IL-12, TGF-beta and IL-4 on allergen induced change in bronchial responsiveness. Respir Res 7: 72 Notch訊息可維持細胞增生、分化及凋亡間的平衡,影響許多器官的發育和功能,在生物體中扮演著很重要的角色。樹突細胞為抗原呈獻細胞的一種,在抗原刺激後會促進T細胞的活化及naïve CD4+ T細胞的分化。一般認為Notch ligands中的Delta4跟抗原呈獻細胞衍生的Th1細胞分化有關,但Nocth訊息中複雜的交互作用,以及在樹突細胞的發育及分化、還有T細胞的活化與Th細胞的分化仍尚未完全明白。在本實驗中,我們假設Delta4對於調控樹突狀細胞的活化及功能扮有很重要的角色。體外實驗中可以觀察到,若在樹突狀細胞發育的過程中給予Delta4刺激會造成樹突狀細胞表面分子MHC class Ⅱ的表現量下降但CD80及CD86的表現量則有上升的情形。另外,我們也觀察到這種經Delta4修飾過後的樹突狀細胞分泌細胞激素IL-10、IL-12、IL-23及IL-27與前發炎激素IL-1β、IL-6及TNF-α皆有下降的情形,因此我們推測這一種樹突狀細胞為一種半成熟的樹突狀細胞。另外,將這群修飾後的樹突狀細胞與T細胞共培養,我們觀察到T細胞的增生情形會被抑制,同時細胞激素IL-5及IFN-γ的分泌量也會減少。此外,我們進一步探討在氣喘動物模式下給予經Delta4作用後的樹突狀細胞是否能預防氣喘疾病的發生。由實驗結果發現,經由Delta4作用的樹突狀細胞能降低OVA專一性的IgE抗體的產生,同時減少氣管呼吸道阻力、肺部發炎細胞浸潤及細胞激素的產生。綜合以上所述,我們推測這一群經由Delta4刺激後的樹突狀細胞確實能有效的降低氣喘的發炎反應,因此未來或許可利用此修飾的樹突狀細胞來進行氣喘的治療。 The Notch pathway participates in cell proliferation, differentiation, and apoptosis processes that affects the development and function in various organs. Dendritic cells (DCs), as professional antigen presenting cells (APCs), induce T cell activation and promote T cells differentiation by antigen stimulation. It is known that Delta4 on APCs is associated with the stimulation of Th1-type response. However, the regulation of activation and differentiation in DCs and T cells by Delta4 remains unclear. In this study, we firstly investigated whether Delta4 played an immune-modulatory role in the activation and function of DCs in vitro. The DCs were treated with Delta4 during cells development and show low levels of MHC class Ⅱ but high level of CD80 and CD86 expression in Delta4-treated DCs. These modified DCs might be semi-mature form of DCs because they expressed low level of cytokines such as IL-12,IL-23,IL-27,IL-1β,IL-6,IL-10 and TNF-α. In addition, these Delta4-treated DCs not only inhibited the proliferation of T cells, but also reduced the production of IL-5 and IFN-γ of activated T cells. Furthermore, these modified DCs was applied to examine the preventive effects in established asthmatic animal model. In here, we showed that these modified DCs efficently moderated the characteristics of asthma, including expression of OVA-specific IgE antibody, airway hyper-responsiveness, eosinophilic airway inflammation, and cytokine production. Taken together, these results suggest that Delta4-modulated DCs are effective in suppressing asthmatic airway inflammation and are a potential therapeutic tool for asthma. Other/Unknown Material Crassostrea gigas Mite Taipei Medical University Repository (TMUR) Dent ENVELOPE(140.050,140.050,-66.649,-66.649) Weaver ENVELOPE(-153.833,-153.833,-86.967,-86.967) Osborne ENVELOPE(-84.767,-84.767,-78.617,-78.617) Barton ENVELOPE(-58.733,-58.733,-62.233,-62.233) Johansen ENVELOPE(67.217,67.217,-70.544,-70.544) McIntyre ENVELOPE(-153.000,-153.000,-87.283,-87.283) Ramos ENVELOPE(-59.700,-59.700,-62.500,-62.500) Rousseau ENVELOPE(-59.617,-59.617,-62.500,-62.500) Fang ENVELOPE(167.217,167.217,-77.483,-77.483) Buckley ENVELOPE(163.933,163.933,-84.967,-84.967) Jagged ENVELOPE(-65.683,-65.683,-65.967,-65.967) Ramsay ENVELOPE(-44.733,-44.733,-60.733,-60.733) Bertrand ENVELOPE(-67.077,-67.077,-68.514,-68.514) Mellor ENVELOPE(-114.944,-114.944,60.714,60.714) Wharton ENVELOPE(157.817,157.817,-81.050,-81.050) Chiang ENVELOPE(162.650,162.650,-77.967,-77.967) Janus ENVELOPE(163.100,163.100,-71.067,-71.067) Lira ENVELOPE(48.900,48.900,-67.867,-67.867) Yvon ENVELOPE(70.283,70.283,-49.350,-49.350) Corry ENVELOPE(-57.583,-57.583,-63.700,-63.700) Kanda ENVELOPE(31.909,31.909,67.119,67.119) Kuipers ENVELOPE(161.400,161.400,-77.900,-77.900) Brockton ENVELOPE(-178.417,-178.417,-80.250,-80.250) Dent La ENVELOPE(140.050,140.050,-66.649,-66.649) |