Methodological Issues of Using the Randomized Machine Learning for Forecasting the Dynamics of Thermokarst Arctic Lakes

The analysis of the state of the problems of modeling the spatio-temporal dynamics of the lake fields under the conditions of modern climate changes is carried out. It is shown that the analytical methods used in studying the dynamics of thermokarst processes in individual lakes are not suitable for...

Full description

Bibliographic Details
Published in:Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics
Main Authors: Попков, Юрий Соломонович, Волкович, Зеев, Мельников, Андрей Витальевич, Полищук, Юрий Михайлович
Format: Article in Journal/Newspaper
Language:Russian
Published: South Ural State University 2019
Subjects:
Online Access:https://vestnik.susu.ru/ctcr/article/view/9174
https://doi.org/10.14529/ctcr190401
_version_ 1821831797685616640
author Попков, Юрий Соломонович
Волкович, Зеев
Мельников, Андрей Витальевич
Полищук, Юрий Михайлович
author_facet Попков, Юрий Соломонович
Волкович, Зеев
Мельников, Андрей Витальевич
Полищук, Юрий Михайлович
author_sort Попков, Юрий Соломонович
collection Bulletin of the South Ural State University
container_issue 4
container_start_page 5
container_title Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics
container_volume 19
description The analysis of the state of the problems of modeling the spatio-temporal dynamics of the lake fields under the conditions of modern climate changes is carried out. It is shown that the analytical methods used in studying the dynamics of thermokarst processes in individual lakes are not suitable for studying the spatiotemporal changes in the fields of thermokarst lakes. The geo-simulation modeling method proposed for studying the dynamics of fields of thermokarst lakes does not provide sufficient forecasting accuracy. The problems of applying a new approach to the prediction of the spatio-temporal dynamics of fields under the conditions of modern climatic changes based on methods and algorithms of entropy-randomized machine learning are considered. The experimental results of remote studies of the dynamics of fields of thermokarst lakes in the Arctic permafrost zone of Western Siberia were obtained using satellite images for the period of several decades starting in 1973. Climatic data for the same period were obtained by reanalysis based on the well-known ERA-40, ERA-Interim systems and APHRODITE JMA. An array of experimental data has been compiled on changes in lake areas, average annual temperature and annual precipitation in the permafrost zone of Western Siberia over the period of research. Regression analysis of geocryological and climatic data showed that the reduction in the area of lakes can be explained mainly by an increase in surface temperature and a change in precipitation. The structure of a randomized forecast model for the dynamics of fields of thermokarst lakes is determined taking into account parameters reflecting changes in lake areas, average annual temperature and precipitation level. The features of using experimental data in the framework of an entropy-randomized approach to forecasting the spatio-temporal dynamics of fields of thermokarst lakes under the conditions of modern climate changes are considered. Проведен анализ состояния проблем моделирования пространственно-временной ...
format Article in Journal/Newspaper
genre Arctic
Climate change
Global warming
permafrost
Thermokarst
термокарст*
Siberia
вечная мерзлота
genre_facet Arctic
Climate change
Global warming
permafrost
Thermokarst
термокарст*
Siberia
вечная мерзлота
geographic Aphrodite
Arctic
geographic_facet Aphrodite
Arctic
id ftsusunivojs:oai:ojs.vestnik.susu.ac.ru:article/9174
institution Open Polar
language Russian
long_lat ENVELOPE(-64.533,-64.533,-68.900,-68.900)
op_collection_id ftsusunivojs
op_container_end_page 12
op_doi https://doi.org/10.14529/ctcr190401
op_relation https://vestnik.susu.ru/ctcr/article/view/9174/7383
https://vestnik.susu.ru/ctcr/article/view/9174
doi:10.14529/ctcr190401
op_rights (c) 2019 Компьютерные технологии, управление, радиоэлектроника
op_source Computer Technologies, Automatic Control, Radioelectronics; Том 19, № 4 (2019); 5-12
Компьютерные технологии, управление, радиоэлектроника; Том 19, № 4 (2019); 5-12
2409-6571
1991-976X
publishDate 2019
publisher South Ural State University
record_format openpolar
spelling ftsusunivojs:oai:ojs.vestnik.susu.ac.ru:article/9174 2025-01-16T20:36:53+00:00 Methodological Issues of Using the Randomized Machine Learning for Forecasting the Dynamics of Thermokarst Arctic Lakes Методологические вопросы использования рандомизированного машинного обучения для прогнозирования динамики термокарстовых озер Арктики Попков, Юрий Соломонович Волкович, Зеев Мельников, Андрей Витальевич Полищук, Юрий Михайлович 2019-11-18 application/pdf https://vestnik.susu.ru/ctcr/article/view/9174 https://doi.org/10.14529/ctcr190401 rus rus South Ural State University Южно-Уральский государственный университет https://vestnik.susu.ru/ctcr/article/view/9174/7383 https://vestnik.susu.ru/ctcr/article/view/9174 doi:10.14529/ctcr190401 (c) 2019 Компьютерные технологии, управление, радиоэлектроника Computer Technologies, Automatic Control, Radioelectronics; Том 19, № 4 (2019); 5-12 Компьютерные технологии, управление, радиоэлектроника; Том 19, № 4 (2019); 5-12 2409-6571 1991-976X machine learning entropy-randomized approach randomized model forecasting spatio-temporal dynamics permafrost thermokarst lakes satellite images meteorological data reanalysis climate change global warming машинное обучение энтропийно-рандомизированный подход рандомизированная модель прогнозирование пространственно-временная динамика вечная мерзлота термокарстовые озера спутниковые снимки реанализ метеоданных климатические изменения info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftsusunivojs https://doi.org/10.14529/ctcr190401 2024-06-24T03:11:41Z The analysis of the state of the problems of modeling the spatio-temporal dynamics of the lake fields under the conditions of modern climate changes is carried out. It is shown that the analytical methods used in studying the dynamics of thermokarst processes in individual lakes are not suitable for studying the spatiotemporal changes in the fields of thermokarst lakes. The geo-simulation modeling method proposed for studying the dynamics of fields of thermokarst lakes does not provide sufficient forecasting accuracy. The problems of applying a new approach to the prediction of the spatio-temporal dynamics of fields under the conditions of modern climatic changes based on methods and algorithms of entropy-randomized machine learning are considered. The experimental results of remote studies of the dynamics of fields of thermokarst lakes in the Arctic permafrost zone of Western Siberia were obtained using satellite images for the period of several decades starting in 1973. Climatic data for the same period were obtained by reanalysis based on the well-known ERA-40, ERA-Interim systems and APHRODITE JMA. An array of experimental data has been compiled on changes in lake areas, average annual temperature and annual precipitation in the permafrost zone of Western Siberia over the period of research. Regression analysis of geocryological and climatic data showed that the reduction in the area of lakes can be explained mainly by an increase in surface temperature and a change in precipitation. The structure of a randomized forecast model for the dynamics of fields of thermokarst lakes is determined taking into account parameters reflecting changes in lake areas, average annual temperature and precipitation level. The features of using experimental data in the framework of an entropy-randomized approach to forecasting the spatio-temporal dynamics of fields of thermokarst lakes under the conditions of modern climate changes are considered. Проведен анализ состояния проблем моделирования пространственно-временной ... Article in Journal/Newspaper Arctic Climate change Global warming permafrost Thermokarst термокарст* Siberia вечная мерзлота Bulletin of the South Ural State University Aphrodite ENVELOPE(-64.533,-64.533,-68.900,-68.900) Arctic Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics 19 4 5 12
spellingShingle machine learning
entropy-randomized approach
randomized model
forecasting
spatio-temporal dynamics
permafrost
thermokarst lakes
satellite images
meteorological data reanalysis
climate change
global warming
машинное обучение
энтропийно-рандомизированный подход
рандомизированная модель
прогнозирование
пространственно-временная динамика
вечная мерзлота
термокарстовые озера
спутниковые снимки
реанализ метеоданных
климатические изменения
Попков, Юрий Соломонович
Волкович, Зеев
Мельников, Андрей Витальевич
Полищук, Юрий Михайлович
Methodological Issues of Using the Randomized Machine Learning for Forecasting the Dynamics of Thermokarst Arctic Lakes
title Methodological Issues of Using the Randomized Machine Learning for Forecasting the Dynamics of Thermokarst Arctic Lakes
title_full Methodological Issues of Using the Randomized Machine Learning for Forecasting the Dynamics of Thermokarst Arctic Lakes
title_fullStr Methodological Issues of Using the Randomized Machine Learning for Forecasting the Dynamics of Thermokarst Arctic Lakes
title_full_unstemmed Methodological Issues of Using the Randomized Machine Learning for Forecasting the Dynamics of Thermokarst Arctic Lakes
title_short Methodological Issues of Using the Randomized Machine Learning for Forecasting the Dynamics of Thermokarst Arctic Lakes
title_sort methodological issues of using the randomized machine learning for forecasting the dynamics of thermokarst arctic lakes
topic machine learning
entropy-randomized approach
randomized model
forecasting
spatio-temporal dynamics
permafrost
thermokarst lakes
satellite images
meteorological data reanalysis
climate change
global warming
машинное обучение
энтропийно-рандомизированный подход
рандомизированная модель
прогнозирование
пространственно-временная динамика
вечная мерзлота
термокарстовые озера
спутниковые снимки
реанализ метеоданных
климатические изменения
topic_facet machine learning
entropy-randomized approach
randomized model
forecasting
spatio-temporal dynamics
permafrost
thermokarst lakes
satellite images
meteorological data reanalysis
climate change
global warming
машинное обучение
энтропийно-рандомизированный подход
рандомизированная модель
прогнозирование
пространственно-временная динамика
вечная мерзлота
термокарстовые озера
спутниковые снимки
реанализ метеоданных
климатические изменения
url https://vestnik.susu.ru/ctcr/article/view/9174
https://doi.org/10.14529/ctcr190401