Simulating Linear Kinematic Features in Viscous‐Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering
Observations in polar regions show that sea ice deformations are often narrow linear features. These long bands of deformations are referred to as Linear Kinematic Features (LKFs). Viscous‐plastic sea ice models have the capability to simulate LKFs and more generally sea ice deformations. Moreover,...
Published in: | Journal of Advances in Modeling Earth Systems |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://doi.org/10.1029/2021MS002523 http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/9859 |
_version_ | 1821636303188393984 |
---|---|
author | Mehlmann, C. Danilov, S. Losch, M. Lemieux, J. F. Hutter, N. Richter, T. Blain, P. Hunke, E. C. Korn, P. Danilov, S.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Losch, M.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Lemieux, J. F.; 3 Environnement et Changement Climatique Canada Recherche en Prévision Numérique Environnementale Dorval QC Canada Hutter, N.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Richter, T.; 4 Otto‐von‐Guericke Universität Magdeburg Magdeburg Germany Blain, P.; 5 Environnement et Changement Climatique Canada Service Météorologique du Canada Dorval QC Canada Hunke, E. C.; 6 Los Alamos National Laboratory Los Alamos NM USA Korn, P.; 1 Max‐Planck Institute for Meteorology Hamburg Germany |
author_facet | Mehlmann, C. Danilov, S. Losch, M. Lemieux, J. F. Hutter, N. Richter, T. Blain, P. Hunke, E. C. Korn, P. Danilov, S.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Losch, M.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Lemieux, J. F.; 3 Environnement et Changement Climatique Canada Recherche en Prévision Numérique Environnementale Dorval QC Canada Hutter, N.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Richter, T.; 4 Otto‐von‐Guericke Universität Magdeburg Magdeburg Germany Blain, P.; 5 Environnement et Changement Climatique Canada Service Météorologique du Canada Dorval QC Canada Hunke, E. C.; 6 Los Alamos National Laboratory Los Alamos NM USA Korn, P.; 1 Max‐Planck Institute for Meteorology Hamburg Germany |
author_sort | Mehlmann, C. |
collection | GEO-LEOe-docs (FID GEO) |
container_issue | 11 |
container_title | Journal of Advances in Modeling Earth Systems |
container_volume | 13 |
description | Observations in polar regions show that sea ice deformations are often narrow linear features. These long bands of deformations are referred to as Linear Kinematic Features (LKFs). Viscous‐plastic sea ice models have the capability to simulate LKFs and more generally sea ice deformations. Moreover, viscous‐plastic models simulate a larger number and more refined LKFs as the spatial resolution is increased. Besides grid spacing, other aspects of a numerical implementation, such as the placement of velocities and the associated degrees of freedom, may impact the formation of simulated LKFs. To explore these effects this study compares numerical solutions of sea ice models with different velocity staggering in a benchmark problem. Discretizations based on A‐,B‐, and C‐grid systems on quadrilateral meshes have similar resolution properties as an approximation with an A‐grid staggering on triangular grids (with the same total number of vertices). CD‐grid approximations with a given grid spacing have properties, specifically the number and length of simulated LKFs, that are qualitatively similar to approximations on conventional Arakawa A‐grid, B‐grid, and C‐grid approaches with half the grid spacing or less, making the CD‐discretization more efficient with respect to grid resolution. One reason for this behavior is the fact that the CD‐grid approach has a higher number of degrees of freedom to discretize the velocity field. The higher effective resolution of the CD‐discretization makes it an attractive alternative to conventional discretizations. Plain Language Summary: Sea ice in the Arctic and Antarctic Oceans plays an important role in the exchange of heat and freshwater between the atmosphere and the ocean and hence in the climate in general. Satellite observations of polar regions show that the ice drift sometimes produces long features that are either cracks (leads) and zones of thicker sea ice (pressure ridges). This phenomenon is called deformation. It is mathematically described by the non‐uniform way in ... |
format | Article in Journal/Newspaper |
genre | Antarc* Antarctic Arctic Sea ice |
genre_facet | Antarc* Antarctic Arctic Sea ice |
geographic | Antarctic Arctic |
geographic_facet | Antarctic Arctic |
id | ftsubggeo:oai:e-docs.geo-leo.de:11858/9859 |
institution | Open Polar |
language | English |
op_collection_id | ftsubggeo |
op_doi | https://doi.org/10.1029/2021MS002523 |
op_relation | doi:10.1029/2021MS002523 http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/9859 |
op_rights | This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
op_rightsnorm | CC-BY-NC-ND |
publishDate | 2021 |
record_format | openpolar |
spelling | ftsubggeo:oai:e-docs.geo-leo.de:11858/9859 2025-01-16T19:11:20+00:00 Simulating Linear Kinematic Features in Viscous‐Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering Mehlmann, C. Danilov, S. Losch, M. Lemieux, J. F. Hutter, N. Richter, T. Blain, P. Hunke, E. C. Korn, P. Danilov, S.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Losch, M.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Lemieux, J. F.; 3 Environnement et Changement Climatique Canada Recherche en Prévision Numérique Environnementale Dorval QC Canada Hutter, N.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Richter, T.; 4 Otto‐von‐Guericke Universität Magdeburg Magdeburg Germany Blain, P.; 5 Environnement et Changement Climatique Canada Service Météorologique du Canada Dorval QC Canada Hunke, E. C.; 6 Los Alamos National Laboratory Los Alamos NM USA Korn, P.; 1 Max‐Planck Institute for Meteorology Hamburg Germany 2021-10-28 https://doi.org/10.1029/2021MS002523 http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/9859 eng eng doi:10.1029/2021MS002523 http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/9859 This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. CC-BY-NC-ND ddc:550 ddc:551.343 doc-type:article 2021 ftsubggeo https://doi.org/10.1029/2021MS002523 2022-11-09T06:51:42Z Observations in polar regions show that sea ice deformations are often narrow linear features. These long bands of deformations are referred to as Linear Kinematic Features (LKFs). Viscous‐plastic sea ice models have the capability to simulate LKFs and more generally sea ice deformations. Moreover, viscous‐plastic models simulate a larger number and more refined LKFs as the spatial resolution is increased. Besides grid spacing, other aspects of a numerical implementation, such as the placement of velocities and the associated degrees of freedom, may impact the formation of simulated LKFs. To explore these effects this study compares numerical solutions of sea ice models with different velocity staggering in a benchmark problem. Discretizations based on A‐,B‐, and C‐grid systems on quadrilateral meshes have similar resolution properties as an approximation with an A‐grid staggering on triangular grids (with the same total number of vertices). CD‐grid approximations with a given grid spacing have properties, specifically the number and length of simulated LKFs, that are qualitatively similar to approximations on conventional Arakawa A‐grid, B‐grid, and C‐grid approaches with half the grid spacing or less, making the CD‐discretization more efficient with respect to grid resolution. One reason for this behavior is the fact that the CD‐grid approach has a higher number of degrees of freedom to discretize the velocity field. The higher effective resolution of the CD‐discretization makes it an attractive alternative to conventional discretizations. Plain Language Summary: Sea ice in the Arctic and Antarctic Oceans plays an important role in the exchange of heat and freshwater between the atmosphere and the ocean and hence in the climate in general. Satellite observations of polar regions show that the ice drift sometimes produces long features that are either cracks (leads) and zones of thicker sea ice (pressure ridges). This phenomenon is called deformation. It is mathematically described by the non‐uniform way in ... Article in Journal/Newspaper Antarc* Antarctic Arctic Sea ice GEO-LEOe-docs (FID GEO) Antarctic Arctic Journal of Advances in Modeling Earth Systems 13 11 |
spellingShingle | ddc:550 ddc:551.343 Mehlmann, C. Danilov, S. Losch, M. Lemieux, J. F. Hutter, N. Richter, T. Blain, P. Hunke, E. C. Korn, P. Danilov, S.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Losch, M.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Lemieux, J. F.; 3 Environnement et Changement Climatique Canada Recherche en Prévision Numérique Environnementale Dorval QC Canada Hutter, N.; 2 Alfred‐Wegener‐Institut Helmholtz Zentrum für Polar‐ und Meeresforschung Bremerhaven Germany Richter, T.; 4 Otto‐von‐Guericke Universität Magdeburg Magdeburg Germany Blain, P.; 5 Environnement et Changement Climatique Canada Service Météorologique du Canada Dorval QC Canada Hunke, E. C.; 6 Los Alamos National Laboratory Los Alamos NM USA Korn, P.; 1 Max‐Planck Institute for Meteorology Hamburg Germany Simulating Linear Kinematic Features in Viscous‐Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering |
title | Simulating Linear Kinematic Features in Viscous‐Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering |
title_full | Simulating Linear Kinematic Features in Viscous‐Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering |
title_fullStr | Simulating Linear Kinematic Features in Viscous‐Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering |
title_full_unstemmed | Simulating Linear Kinematic Features in Viscous‐Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering |
title_short | Simulating Linear Kinematic Features in Viscous‐Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering |
title_sort | simulating linear kinematic features in viscous‐plastic sea ice models on quadrilateral and triangular grids with different variable staggering |
topic | ddc:550 ddc:551.343 |
topic_facet | ddc:550 ddc:551.343 |
url | https://doi.org/10.1029/2021MS002523 http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/9859 |