ICON‐O: The Ocean Component of the ICON Earth System Model—Global Simulation Characteristics and Local Telescoping Capability

We describe the ocean general circulation model Icosahedral Nonhydrostatic Weather and Climate Model (ICON‐O) of the Max Planck Institute for Meteorology, which forms the ocean‐sea ice component of the Earth system model ICON‐ESM. ICON‐O relies on innovative structure‐preserving finite volume numeri...

Full description

Bibliographic Details
Published in:Journal of Advances in Modeling Earth Systems
Main Authors: Korn, P., Brüggemann, N., Jungclaus, J. H., Lorenz, S. J., Gutjahr, O., Haak, H., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Notz, D., Putrasahan, D. A., Singh, V., von Storch, J.‐S., Zhu, X., Marotzke, J., Brüggemann, N.; 1 Max Planck Institute for Meteorology Hamburg Germany, Jungclaus, J. H.; 1 Max Planck Institute for Meteorology Hamburg Germany, Lorenz, S. J.; 1 Max Planck Institute for Meteorology Hamburg Germany, Gutjahr, O.; 1 Max Planck Institute for Meteorology Hamburg Germany, Haak, H.; 1 Max Planck Institute for Meteorology Hamburg Germany, Linardakis, L.; 1 Max Planck Institute for Meteorology Hamburg Germany, Mehlmann, C.; 1 Max Planck Institute for Meteorology Hamburg Germany, Mikolajewicz, U.; 1 Max Planck Institute for Meteorology Hamburg Germany, Notz, D.; 1 Max Planck Institute for Meteorology Hamburg Germany, Putrasahan, D. A.; 1 Max Planck Institute for Meteorology Hamburg Germany, Singh, V.; 1 Max Planck Institute for Meteorology Hamburg Germany, von Storch, J.‐S.; 1 Max Planck Institute for Meteorology Hamburg Germany, Zhu, X.; 1 Max Planck Institute for Meteorology Hamburg Germany, Marotzke, J.; 1 Max Planck Institute for Meteorology Hamburg Germany
Format: Article in Journal/Newspaper
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.1029/2021MS002952
http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10449
_version_ 1821654085246386176
author Korn, P.
Brüggemann, N.
Jungclaus, J. H.
Lorenz, S. J.
Gutjahr, O.
Haak, H.
Linardakis, L.
Mehlmann, C.
Mikolajewicz, U.
Notz, D.
Putrasahan, D. A.
Singh, V.
von Storch, J.‐S.
Zhu, X.
Marotzke, J.
Brüggemann, N.; 1 Max Planck Institute for Meteorology Hamburg Germany
Jungclaus, J. H.; 1 Max Planck Institute for Meteorology Hamburg Germany
Lorenz, S. J.; 1 Max Planck Institute for Meteorology Hamburg Germany
Gutjahr, O.; 1 Max Planck Institute for Meteorology Hamburg Germany
Haak, H.; 1 Max Planck Institute for Meteorology Hamburg Germany
Linardakis, L.; 1 Max Planck Institute for Meteorology Hamburg Germany
Mehlmann, C.; 1 Max Planck Institute for Meteorology Hamburg Germany
Mikolajewicz, U.; 1 Max Planck Institute for Meteorology Hamburg Germany
Notz, D.; 1 Max Planck Institute for Meteorology Hamburg Germany
Putrasahan, D. A.; 1 Max Planck Institute for Meteorology Hamburg Germany
Singh, V.; 1 Max Planck Institute for Meteorology Hamburg Germany
von Storch, J.‐S.; 1 Max Planck Institute for Meteorology Hamburg Germany
Zhu, X.; 1 Max Planck Institute for Meteorology Hamburg Germany
Marotzke, J.; 1 Max Planck Institute for Meteorology Hamburg Germany
author_facet Korn, P.
Brüggemann, N.
Jungclaus, J. H.
Lorenz, S. J.
Gutjahr, O.
Haak, H.
Linardakis, L.
Mehlmann, C.
Mikolajewicz, U.
Notz, D.
Putrasahan, D. A.
Singh, V.
von Storch, J.‐S.
Zhu, X.
Marotzke, J.
Brüggemann, N.; 1 Max Planck Institute for Meteorology Hamburg Germany
Jungclaus, J. H.; 1 Max Planck Institute for Meteorology Hamburg Germany
Lorenz, S. J.; 1 Max Planck Institute for Meteorology Hamburg Germany
Gutjahr, O.; 1 Max Planck Institute for Meteorology Hamburg Germany
Haak, H.; 1 Max Planck Institute for Meteorology Hamburg Germany
Linardakis, L.; 1 Max Planck Institute for Meteorology Hamburg Germany
Mehlmann, C.; 1 Max Planck Institute for Meteorology Hamburg Germany
Mikolajewicz, U.; 1 Max Planck Institute for Meteorology Hamburg Germany
Notz, D.; 1 Max Planck Institute for Meteorology Hamburg Germany
Putrasahan, D. A.; 1 Max Planck Institute for Meteorology Hamburg Germany
Singh, V.; 1 Max Planck Institute for Meteorology Hamburg Germany
von Storch, J.‐S.; 1 Max Planck Institute for Meteorology Hamburg Germany
Zhu, X.; 1 Max Planck Institute for Meteorology Hamburg Germany
Marotzke, J.; 1 Max Planck Institute for Meteorology Hamburg Germany
author_sort Korn, P.
collection GEO-LEOe-docs (FID GEO)
container_issue 10
container_title Journal of Advances in Modeling Earth Systems
container_volume 14
description We describe the ocean general circulation model Icosahedral Nonhydrostatic Weather and Climate Model (ICON‐O) of the Max Planck Institute for Meteorology, which forms the ocean‐sea ice component of the Earth system model ICON‐ESM. ICON‐O relies on innovative structure‐preserving finite volume numerics. We demonstrate the fundamental ability of ICON‐O to simulate key features of global ocean dynamics at both uniform and non‐uniform resolution. Two experiments are analyzed and compared with observations, one with a nearly uniform and eddy‐rich resolution of ∼10 km and another with a telescoping configuration whose resolution varies smoothly from globally ∼80 to ∼10 km in a focal region in the North Atlantic. Our results show first, that ICON‐O on the nearly uniform grid simulates an ocean circulation that compares well with observations and second, that ICON‐O in its telescope configuration is capable of reproducing the dynamics in the focal region over decadal time scales at a fraction of the computational cost of the uniform‐grid simulation. The telescopic technique offers an alternative to the established regionalization approaches. It can be used either to resolve local circulation more accurately or to represent local scales that cannot be simulated globally while remaining within a global modeling framework. Plain Language Summary: Icosahedral Nonhydrostatic Weather and Climate Model (ICON‐O) is a global ocean general circulation model that works on unstructured grids. It rests on novel numerical techniques that belong to the class of structure‐preserving finite Volume methods. Unstructured grids allow on the one hand a uniform coverage of the sphere without resolution clustering, and on the other hand they provide the freedom to intentionally cluster grid points in some region of interest. In this work we run ICON‐O on an uniform grid of approximately 10 km resolution and on a grid with four times less degrees of freedom that is stretched such that in the resulting telescoping grid within the North ...
format Article in Journal/Newspaper
genre North Atlantic
Sea ice
genre_facet North Atlantic
Sea ice
id ftsubggeo:oai:e-docs.geo-leo.de:11858/10449
institution Open Polar
language English
op_collection_id ftsubggeo
op_doi https://doi.org/10.1029/2021MS002952
op_relation doi:10.1029/2021MS002952
http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10449
op_rights This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
op_rightsnorm CC-BY-NC-ND
publishDate 2022
record_format openpolar
spelling ftsubggeo:oai:e-docs.geo-leo.de:11858/10449 2025-01-16T23:45:24+00:00 ICON‐O: The Ocean Component of the ICON Earth System Model—Global Simulation Characteristics and Local Telescoping Capability Korn, P. Brüggemann, N. Jungclaus, J. H. Lorenz, S. J. Gutjahr, O. Haak, H. Linardakis, L. Mehlmann, C. Mikolajewicz, U. Notz, D. Putrasahan, D. A. Singh, V. von Storch, J.‐S. Zhu, X. Marotzke, J. Brüggemann, N.; 1 Max Planck Institute for Meteorology Hamburg Germany Jungclaus, J. H.; 1 Max Planck Institute for Meteorology Hamburg Germany Lorenz, S. J.; 1 Max Planck Institute for Meteorology Hamburg Germany Gutjahr, O.; 1 Max Planck Institute for Meteorology Hamburg Germany Haak, H.; 1 Max Planck Institute for Meteorology Hamburg Germany Linardakis, L.; 1 Max Planck Institute for Meteorology Hamburg Germany Mehlmann, C.; 1 Max Planck Institute for Meteorology Hamburg Germany Mikolajewicz, U.; 1 Max Planck Institute for Meteorology Hamburg Germany Notz, D.; 1 Max Planck Institute for Meteorology Hamburg Germany Putrasahan, D. A.; 1 Max Planck Institute for Meteorology Hamburg Germany Singh, V.; 1 Max Planck Institute for Meteorology Hamburg Germany von Storch, J.‐S.; 1 Max Planck Institute for Meteorology Hamburg Germany Zhu, X.; 1 Max Planck Institute for Meteorology Hamburg Germany Marotzke, J.; 1 Max Planck Institute for Meteorology Hamburg Germany 2022-10-06 https://doi.org/10.1029/2021MS002952 http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10449 eng eng doi:10.1029/2021MS002952 http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10449 This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. CC-BY-NC-ND ddc:551.46 ocean modeling ocean dynamics unstructured grid modeling local refinement structure preservation numerics doc-type:article 2022 ftsubggeo https://doi.org/10.1029/2021MS002952 2023-01-29T23:12:02Z We describe the ocean general circulation model Icosahedral Nonhydrostatic Weather and Climate Model (ICON‐O) of the Max Planck Institute for Meteorology, which forms the ocean‐sea ice component of the Earth system model ICON‐ESM. ICON‐O relies on innovative structure‐preserving finite volume numerics. We demonstrate the fundamental ability of ICON‐O to simulate key features of global ocean dynamics at both uniform and non‐uniform resolution. Two experiments are analyzed and compared with observations, one with a nearly uniform and eddy‐rich resolution of ∼10 km and another with a telescoping configuration whose resolution varies smoothly from globally ∼80 to ∼10 km in a focal region in the North Atlantic. Our results show first, that ICON‐O on the nearly uniform grid simulates an ocean circulation that compares well with observations and second, that ICON‐O in its telescope configuration is capable of reproducing the dynamics in the focal region over decadal time scales at a fraction of the computational cost of the uniform‐grid simulation. The telescopic technique offers an alternative to the established regionalization approaches. It can be used either to resolve local circulation more accurately or to represent local scales that cannot be simulated globally while remaining within a global modeling framework. Plain Language Summary: Icosahedral Nonhydrostatic Weather and Climate Model (ICON‐O) is a global ocean general circulation model that works on unstructured grids. It rests on novel numerical techniques that belong to the class of structure‐preserving finite Volume methods. Unstructured grids allow on the one hand a uniform coverage of the sphere without resolution clustering, and on the other hand they provide the freedom to intentionally cluster grid points in some region of interest. In this work we run ICON‐O on an uniform grid of approximately 10 km resolution and on a grid with four times less degrees of freedom that is stretched such that in the resulting telescoping grid within the North ... Article in Journal/Newspaper North Atlantic Sea ice GEO-LEOe-docs (FID GEO) Journal of Advances in Modeling Earth Systems 14 10
spellingShingle ddc:551.46
ocean modeling
ocean dynamics
unstructured grid modeling
local refinement
structure preservation numerics
Korn, P.
Brüggemann, N.
Jungclaus, J. H.
Lorenz, S. J.
Gutjahr, O.
Haak, H.
Linardakis, L.
Mehlmann, C.
Mikolajewicz, U.
Notz, D.
Putrasahan, D. A.
Singh, V.
von Storch, J.‐S.
Zhu, X.
Marotzke, J.
Brüggemann, N.; 1 Max Planck Institute for Meteorology Hamburg Germany
Jungclaus, J. H.; 1 Max Planck Institute for Meteorology Hamburg Germany
Lorenz, S. J.; 1 Max Planck Institute for Meteorology Hamburg Germany
Gutjahr, O.; 1 Max Planck Institute for Meteorology Hamburg Germany
Haak, H.; 1 Max Planck Institute for Meteorology Hamburg Germany
Linardakis, L.; 1 Max Planck Institute for Meteorology Hamburg Germany
Mehlmann, C.; 1 Max Planck Institute for Meteorology Hamburg Germany
Mikolajewicz, U.; 1 Max Planck Institute for Meteorology Hamburg Germany
Notz, D.; 1 Max Planck Institute for Meteorology Hamburg Germany
Putrasahan, D. A.; 1 Max Planck Institute for Meteorology Hamburg Germany
Singh, V.; 1 Max Planck Institute for Meteorology Hamburg Germany
von Storch, J.‐S.; 1 Max Planck Institute for Meteorology Hamburg Germany
Zhu, X.; 1 Max Planck Institute for Meteorology Hamburg Germany
Marotzke, J.; 1 Max Planck Institute for Meteorology Hamburg Germany
ICON‐O: The Ocean Component of the ICON Earth System Model—Global Simulation Characteristics and Local Telescoping Capability
title ICON‐O: The Ocean Component of the ICON Earth System Model—Global Simulation Characteristics and Local Telescoping Capability
title_full ICON‐O: The Ocean Component of the ICON Earth System Model—Global Simulation Characteristics and Local Telescoping Capability
title_fullStr ICON‐O: The Ocean Component of the ICON Earth System Model—Global Simulation Characteristics and Local Telescoping Capability
title_full_unstemmed ICON‐O: The Ocean Component of the ICON Earth System Model—Global Simulation Characteristics and Local Telescoping Capability
title_short ICON‐O: The Ocean Component of the ICON Earth System Model—Global Simulation Characteristics and Local Telescoping Capability
title_sort icon‐o: the ocean component of the icon earth system model—global simulation characteristics and local telescoping capability
topic ddc:551.46
ocean modeling
ocean dynamics
unstructured grid modeling
local refinement
structure preservation numerics
topic_facet ddc:551.46
ocean modeling
ocean dynamics
unstructured grid modeling
local refinement
structure preservation numerics
url https://doi.org/10.1029/2021MS002952
http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10449