The ICON Earth System Model Version 1.0

This work documents the ICON‐Earth System Model (ICON‐ESM V1.0), the first coupled model based on the ICON (ICOsahedral Non‐hydrostatic) framework with its unstructured, icosahedral grid concept. The ICON‐A atmosphere uses a nonhydrostatic dynamical core and the ocean model ICON‐O builds on the same...

Full description

Bibliographic Details
Published in:Journal of Advances in Modeling Earth Systems
Main Authors: Jungclaus, J. H., Lorenz, S. J., Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F., Crüger, T., De‐Vrese, P., Gayler, V., Giorgetta, M. A., Gutjahr, O., Haak, H., Hagemann, S., Hanke, M., Ilyina, T., Korn, P., Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W. A., Nabel, J. E. M. S., Notz, D., Pohlmann, H., Putrasahan, D. A., Raddatz, T., Ramme, L., Redler, R., Reick, C. H., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., von Storch, J.‐S., Wachsmann, F., Wieners, K.‐H., Ziemen, F., Stevens, B., Marotzke, J., Claussen, M., Lorenz, S. J.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany, Schmidt, H.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany, Brovkin, V.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany, Brüggemann, N.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany, Chegini, F.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany, Crüger, T.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany, De‐Vrese, P.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany, Gayler, V.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany, Giorgetta, M. A.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Format: Article in Journal/Newspaper
Language:English
Published: 2022
Subjects:
Online Access:https://doi.org/10.1029/2021MS002813
http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10070
_version_ 1821708367586918400
author Jungclaus, J. H.
Lorenz, S. J.
Schmidt, H.
Brovkin, V.
Brüggemann, N.
Chegini, F.
Crüger, T.
De‐Vrese, P.
Gayler, V.
Giorgetta, M. A.
Gutjahr, O.
Haak, H.
Hagemann, S.
Hanke, M.
Ilyina, T.
Korn, P.
Kröger, J.
Linardakis, L.
Mehlmann, C.
Mikolajewicz, U.
Müller, W. A.
Nabel, J. E. M. S.
Notz, D.
Pohlmann, H.
Putrasahan, D. A.
Raddatz, T.
Ramme, L.
Redler, R.
Reick, C. H.
Riddick, T.
Sam, T.
Schneck, R.
Schnur, R.
Schupfner, M.
von Storch, J.‐S.
Wachsmann, F.
Wieners, K.‐H.
Ziemen, F.
Stevens, B.
Marotzke, J.
Claussen, M.
Lorenz, S. J.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Schmidt, H.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Brovkin, V.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Brüggemann, N.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Chegini, F.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Crüger, T.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
De‐Vrese, P.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Gayler, V.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Giorgetta, M. A.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
author_facet Jungclaus, J. H.
Lorenz, S. J.
Schmidt, H.
Brovkin, V.
Brüggemann, N.
Chegini, F.
Crüger, T.
De‐Vrese, P.
Gayler, V.
Giorgetta, M. A.
Gutjahr, O.
Haak, H.
Hagemann, S.
Hanke, M.
Ilyina, T.
Korn, P.
Kröger, J.
Linardakis, L.
Mehlmann, C.
Mikolajewicz, U.
Müller, W. A.
Nabel, J. E. M. S.
Notz, D.
Pohlmann, H.
Putrasahan, D. A.
Raddatz, T.
Ramme, L.
Redler, R.
Reick, C. H.
Riddick, T.
Sam, T.
Schneck, R.
Schnur, R.
Schupfner, M.
von Storch, J.‐S.
Wachsmann, F.
Wieners, K.‐H.
Ziemen, F.
Stevens, B.
Marotzke, J.
Claussen, M.
Lorenz, S. J.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Schmidt, H.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Brovkin, V.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Brüggemann, N.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Chegini, F.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Crüger, T.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
De‐Vrese, P.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Gayler, V.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Giorgetta, M. A.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
author_sort Jungclaus, J. H.
collection GEO-LEOe-docs (FID GEO)
container_issue 4
container_title Journal of Advances in Modeling Earth Systems
container_volume 14
description This work documents the ICON‐Earth System Model (ICON‐ESM V1.0), the first coupled model based on the ICON (ICOsahedral Non‐hydrostatic) framework with its unstructured, icosahedral grid concept. The ICON‐A atmosphere uses a nonhydrostatic dynamical core and the ocean model ICON‐O builds on the same ICON infrastructure, but applies the Boussinesq and hydrostatic approximation and includes a sea‐ice model. The ICON‐Land module provides a new framework for the modeling of land processes and the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are represented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin‐up of a base‐line version at a resolution typical for models participating in the Coupled Model Intercomparison Project (CMIP). The performance of ICON‐ESM is assessed by means of a set of standard CMIP6 simulations. Achievements are well‐balanced top‐of‐atmosphere radiation, stable key climate quantities in the control simulation, and a good representation of the historical surface temperature evolution. The model has overall biases, which are comparable to those of other CMIP models, but ICON‐ESM performs less well than its predecessor, the Max Planck Institute Earth System Model. Problematic biases are diagnosed in ICON‐ESM in the vertical cloud distribution and the mean zonal wind field. In the ocean, sub‐surface temperature and salinity biases are of concern as is a too strong seasonal cycle of the sea‐ice cover in both hemispheres. ICON‐ESM V1.0 serves as a basis for further developments that will take advantage of ICON‐specific properties such as spatially varying resolution, and configurations at very high resolution. Plain Language Summary: ICON‐ESM is a completely new coupled climate and earth system model that applies novel design principles and numerical techniques. The atmosphere model applies a non‐hydrostatic dynamical core, both atmosphere and ocean models apply unstructured meshes, and the model is adapted for high‐performance computing systems. ...
format Article in Journal/Newspaper
genre Sea ice
genre_facet Sea ice
id ftsubggeo:oai:e-docs.geo-leo.de:11858/10070
institution Open Polar
language English
op_collection_id ftsubggeo
op_doi https://doi.org/10.1029/2021MS002813
op_relation doi:10.1029/2021MS002813
http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10070
op_rights This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
op_rightsnorm CC-BY-NC-ND
publishDate 2022
record_format openpolar
spelling ftsubggeo:oai:e-docs.geo-leo.de:11858/10070 2025-01-17T00:44:59+00:00 The ICON Earth System Model Version 1.0 Jungclaus, J. H. Lorenz, S. J. Schmidt, H. Brovkin, V. Brüggemann, N. Chegini, F. Crüger, T. De‐Vrese, P. Gayler, V. Giorgetta, M. A. Gutjahr, O. Haak, H. Hagemann, S. Hanke, M. Ilyina, T. Korn, P. Kröger, J. Linardakis, L. Mehlmann, C. Mikolajewicz, U. Müller, W. A. Nabel, J. E. M. S. Notz, D. Pohlmann, H. Putrasahan, D. A. Raddatz, T. Ramme, L. Redler, R. Reick, C. H. Riddick, T. Sam, T. Schneck, R. Schnur, R. Schupfner, M. von Storch, J.‐S. Wachsmann, F. Wieners, K.‐H. Ziemen, F. Stevens, B. Marotzke, J. Claussen, M. Lorenz, S. J.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany Schmidt, H.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany Brovkin, V.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany Brüggemann, N.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany Chegini, F.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany Crüger, T.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany De‐Vrese, P.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany Gayler, V.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany Giorgetta, M. A.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany 2022-04-09 https://doi.org/10.1029/2021MS002813 http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10070 eng eng doi:10.1029/2021MS002813 http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10070 This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. CC-BY-NC-ND ddc:550.285 ddc:551.63 Earth System Model ICON (Icosahedral Nonhydrostatic) numerical weather prediction (NWP) doc-type:article 2022 ftsubggeo https://doi.org/10.1029/2021MS002813 2022-11-09T06:51:42Z This work documents the ICON‐Earth System Model (ICON‐ESM V1.0), the first coupled model based on the ICON (ICOsahedral Non‐hydrostatic) framework with its unstructured, icosahedral grid concept. The ICON‐A atmosphere uses a nonhydrostatic dynamical core and the ocean model ICON‐O builds on the same ICON infrastructure, but applies the Boussinesq and hydrostatic approximation and includes a sea‐ice model. The ICON‐Land module provides a new framework for the modeling of land processes and the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are represented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin‐up of a base‐line version at a resolution typical for models participating in the Coupled Model Intercomparison Project (CMIP). The performance of ICON‐ESM is assessed by means of a set of standard CMIP6 simulations. Achievements are well‐balanced top‐of‐atmosphere radiation, stable key climate quantities in the control simulation, and a good representation of the historical surface temperature evolution. The model has overall biases, which are comparable to those of other CMIP models, but ICON‐ESM performs less well than its predecessor, the Max Planck Institute Earth System Model. Problematic biases are diagnosed in ICON‐ESM in the vertical cloud distribution and the mean zonal wind field. In the ocean, sub‐surface temperature and salinity biases are of concern as is a too strong seasonal cycle of the sea‐ice cover in both hemispheres. ICON‐ESM V1.0 serves as a basis for further developments that will take advantage of ICON‐specific properties such as spatially varying resolution, and configurations at very high resolution. Plain Language Summary: ICON‐ESM is a completely new coupled climate and earth system model that applies novel design principles and numerical techniques. The atmosphere model applies a non‐hydrostatic dynamical core, both atmosphere and ocean models apply unstructured meshes, and the model is adapted for high‐performance computing systems. ... Article in Journal/Newspaper Sea ice GEO-LEOe-docs (FID GEO) Journal of Advances in Modeling Earth Systems 14 4
spellingShingle ddc:550.285
ddc:551.63
Earth System Model
ICON (Icosahedral Nonhydrostatic)
numerical weather prediction (NWP)
Jungclaus, J. H.
Lorenz, S. J.
Schmidt, H.
Brovkin, V.
Brüggemann, N.
Chegini, F.
Crüger, T.
De‐Vrese, P.
Gayler, V.
Giorgetta, M. A.
Gutjahr, O.
Haak, H.
Hagemann, S.
Hanke, M.
Ilyina, T.
Korn, P.
Kröger, J.
Linardakis, L.
Mehlmann, C.
Mikolajewicz, U.
Müller, W. A.
Nabel, J. E. M. S.
Notz, D.
Pohlmann, H.
Putrasahan, D. A.
Raddatz, T.
Ramme, L.
Redler, R.
Reick, C. H.
Riddick, T.
Sam, T.
Schneck, R.
Schnur, R.
Schupfner, M.
von Storch, J.‐S.
Wachsmann, F.
Wieners, K.‐H.
Ziemen, F.
Stevens, B.
Marotzke, J.
Claussen, M.
Lorenz, S. J.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Schmidt, H.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Brovkin, V.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Brüggemann, N.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Chegini, F.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Crüger, T.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
De‐Vrese, P.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Gayler, V.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
Giorgetta, M. A.; 1 Max‐Planck‐Institute for Meteorology Hamburg Germany
The ICON Earth System Model Version 1.0
title The ICON Earth System Model Version 1.0
title_full The ICON Earth System Model Version 1.0
title_fullStr The ICON Earth System Model Version 1.0
title_full_unstemmed The ICON Earth System Model Version 1.0
title_short The ICON Earth System Model Version 1.0
title_sort icon earth system model version 1.0
topic ddc:550.285
ddc:551.63
Earth System Model
ICON (Icosahedral Nonhydrostatic)
numerical weather prediction (NWP)
topic_facet ddc:550.285
ddc:551.63
Earth System Model
ICON (Icosahedral Nonhydrostatic)
numerical weather prediction (NWP)
url https://doi.org/10.1029/2021MS002813
http://resolver.sub.uni-goettingen.de/purl?gldocs-11858/10070