Distribution and fate of methane released from submarine sources - Results of measurements using an improved in situ mass spectrometer

Methane (CH4) is the most frequent organic compound in the atmosphere and its influence on the global climate is subject of currently conducted scientific discussion. Despite its limited content in the atmosphere (1787 ppbv in 2003), it contributes to ~15 % of the global warming as a result of its 2...

Full description

Bibliographic Details
Main Author: Gentz, Torben
Other Authors: Schlüter, Michael, Bohrmann, Gerhard
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universität Bremen 1980
Subjects:
550
Online Access:https://media.suub.uni-bremen.de/handle/elib/462
https://nbn-resolving.org/urn:nbn:de:gbv:46-00103064-15
Description
Summary:Methane (CH4) is the most frequent organic compound in the atmosphere and its influence on the global climate is subject of currently conducted scientific discussion. Despite its limited content in the atmosphere (1787 ppbv in 2003), it contributes to ~15 % of the global warming as a result of its 20 to 40 times higher global warming potential compared to carbon dioxide (CO2) on a 100 year timescale. One source of atmospheric methane is the release of biogenic and/or thermogenic CH4 from the oceans seafloor, which is currently one of the research priorities of the marine geosciences. These submarine sources are characterized by rising gas bubbles or diffusive methane flux into the water column. It is estimated that these point sources release a total of ~30 Tg CH4 per year into the ocean, and after its biological oxidation or dissolving in the water, ~10 Tg CH4 are released into the atmosphere per year. Additionally, due to the warming of the oceans, an increasing release of methane can be expected as a result of the melting of permafrost and gas hydrates. Steep gradients over very short distances (< 20 m) and high time-based variability (few hours) are known from dissolved methane concentrations in the water column above these submarine CH4 sources. Due to the limited number of samples taken by conventional ex situ methods, an accurate quantification of the methane distribution could hardly be estimated. Nevertheless, one objective of the present thesis was the detailed spatial representation of the dissolved CH4 in the water column originates from submarine seeps as well as the study of relevant pathways such as vertical or horizontal transport, dilution and its microbial oxidation. Therefore, the first part of the dissertation deals with the optimization and establishment of a novel underwater mass spectrometer (UWMS, Inspectr200-200, Applied Microsystems Limited ) designed for inline, real time and in situ sampling in high frequency. Analysis and evaluation of several thousand samples per day take place ...