Intra-specific variation of ocean acidification effects in marine mussels and oysters: integrative physiological studies on tissue and organism responses

Ocean acidification (OA), caused by the oceanic uptake of anthropogenic CO2, is predicted to negatively affect marine mussels and oysters. In addition, the rapid rate at which OA occurs may outpace species’ ability to genetically adapt, leaving pre-existing genetic variation as a potential key to sp...

Full description

Bibliographic Details
Main Author: Stapp, Laura S.
Other Authors: Pörtner, Hans-Otto, Sokolova, Inna
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universität Bremen 2019
Subjects:
CO2
570
Online Access:https://media.suub.uni-bremen.de/handle/elib/4556
https://doi.org/10.26092/elib/353
https://nbn-resolving.org/urn:nbn:de:gbv:46-elib45565
id ftsubbremen:oai:media.suub.uni-bremen.de:Publications/elib/4556
record_format openpolar
spelling ftsubbremen:oai:media.suub.uni-bremen.de:Publications/elib/4556 2023-05-15T17:50:30+02:00 Intra-specific variation of ocean acidification effects in marine mussels and oysters: integrative physiological studies on tissue and organism responses Intra-spezifische Unterschiede in Effekten von Ozeanversauerung auf marine Muscheln und Austern: integrative physiologische Studien am isolierten Gewebe und Gesamtorganismus Stapp, Laura S. Pörtner, Hans-Otto Sokolova, Inna 2019-12-20 application/pdf https://media.suub.uni-bremen.de/handle/elib/4556 https://doi.org/10.26092/elib/353 https://nbn-resolving.org/urn:nbn:de:gbv:46-elib45565 eng eng Universität Bremen FB02 Biologie/Chemie https://media.suub.uni-bremen.de/handle/elib/4556 http://dx.doi.org/10.26092/elib/353 doi:10.26092/elib/353 urn:nbn:de:gbv:46-elib45565 info:eu-repo/semantics/openAccess Bitte wählen Sie eine Lizenz aus: (Unsere Empfehlung: CC-BY) CC-BY Ocean Acidification CO2 Mytilus edilus Saccostrea glomerata metabolic rate filtration rate extracellular pH gill mantle Na /K -ATPase Na /H -exchanger metabolic enzymes hypercapnia 570 570 Life sciences biology ddc:570 Dissertation doctoralThesis 2019 ftsubbremen https://doi.org/10.26092/elib/353 2022-11-09T07:10:13Z Ocean acidification (OA), caused by the oceanic uptake of anthropogenic CO2, is predicted to negatively affect marine mussels and oysters. In addition, the rapid rate at which OA occurs may outpace species’ ability to genetically adapt, leaving pre-existing genetic variation as a potential key to species resilience under OA. Against this backdrop, this thesis investigated the physiological mechanisms underlying intra-specific variation of OA sensitivity of Kiel Fjord blue mussels (Mytilus edulis) and Sydney rock oysters (Saccostrea glomerata). A long-term CO2 acclimation experiment with different family lines of blue mussel revealed that families whose offspring successfully settled at all experimental PCO2 levels (control, intermediate and high PCO2 level) were characterised by an inherently higher metabolic capacity at the whole animal and the cellular level compared to more sensitive family lines, whose offspring failed to survive at the highest experimental PCO2. This increased metabolic scope of tolerant family lines seems to cover elevated metabolic costs at the intermediate PCO2, however; at the highest PCO2, filtration rates and gill aerobic capacity declined, indicating an unfavourable shift in energy demand and supply. A second comparative CO2 acclimation study between a wild population of Sydney rock oysters and a more CO2 tolerant aquaculture line (selected for faster growth) showed that, in contrast to wild oysters, selected oysters were able to avoid a CO2-induced drop of extracellular pH, likely facilitated by an increased capacity for systemic CO2 release due to higher and more energetically efficient filtration rates. In conclusion, the observed pre-existing intra-specific variation in both species suggests potential adaptive capacities. However, as the physiology of marine bivalves is tightly linked with their functions within ecosystems, observed negative OA effects could have far reaching consequences at an ecosystem scale. Doctoral or Postdoctoral Thesis Ocean acidification Media SuUB Bremen (Staats- und Universitätsbibliothek Bremen)
institution Open Polar
collection Media SuUB Bremen (Staats- und Universitätsbibliothek Bremen)
op_collection_id ftsubbremen
language English
topic Ocean Acidification
CO2
Mytilus edilus
Saccostrea glomerata
metabolic rate
filtration rate
extracellular pH
gill
mantle
Na /K -ATPase
Na /H -exchanger
metabolic enzymes
hypercapnia
570
570 Life sciences
biology
ddc:570
spellingShingle Ocean Acidification
CO2
Mytilus edilus
Saccostrea glomerata
metabolic rate
filtration rate
extracellular pH
gill
mantle
Na /K -ATPase
Na /H -exchanger
metabolic enzymes
hypercapnia
570
570 Life sciences
biology
ddc:570
Stapp, Laura S.
Intra-specific variation of ocean acidification effects in marine mussels and oysters: integrative physiological studies on tissue and organism responses
topic_facet Ocean Acidification
CO2
Mytilus edilus
Saccostrea glomerata
metabolic rate
filtration rate
extracellular pH
gill
mantle
Na /K -ATPase
Na /H -exchanger
metabolic enzymes
hypercapnia
570
570 Life sciences
biology
ddc:570
description Ocean acidification (OA), caused by the oceanic uptake of anthropogenic CO2, is predicted to negatively affect marine mussels and oysters. In addition, the rapid rate at which OA occurs may outpace species’ ability to genetically adapt, leaving pre-existing genetic variation as a potential key to species resilience under OA. Against this backdrop, this thesis investigated the physiological mechanisms underlying intra-specific variation of OA sensitivity of Kiel Fjord blue mussels (Mytilus edulis) and Sydney rock oysters (Saccostrea glomerata). A long-term CO2 acclimation experiment with different family lines of blue mussel revealed that families whose offspring successfully settled at all experimental PCO2 levels (control, intermediate and high PCO2 level) were characterised by an inherently higher metabolic capacity at the whole animal and the cellular level compared to more sensitive family lines, whose offspring failed to survive at the highest experimental PCO2. This increased metabolic scope of tolerant family lines seems to cover elevated metabolic costs at the intermediate PCO2, however; at the highest PCO2, filtration rates and gill aerobic capacity declined, indicating an unfavourable shift in energy demand and supply. A second comparative CO2 acclimation study between a wild population of Sydney rock oysters and a more CO2 tolerant aquaculture line (selected for faster growth) showed that, in contrast to wild oysters, selected oysters were able to avoid a CO2-induced drop of extracellular pH, likely facilitated by an increased capacity for systemic CO2 release due to higher and more energetically efficient filtration rates. In conclusion, the observed pre-existing intra-specific variation in both species suggests potential adaptive capacities. However, as the physiology of marine bivalves is tightly linked with their functions within ecosystems, observed negative OA effects could have far reaching consequences at an ecosystem scale.
author2 Pörtner, Hans-Otto
Sokolova, Inna
format Doctoral or Postdoctoral Thesis
author Stapp, Laura S.
author_facet Stapp, Laura S.
author_sort Stapp, Laura S.
title Intra-specific variation of ocean acidification effects in marine mussels and oysters: integrative physiological studies on tissue and organism responses
title_short Intra-specific variation of ocean acidification effects in marine mussels and oysters: integrative physiological studies on tissue and organism responses
title_full Intra-specific variation of ocean acidification effects in marine mussels and oysters: integrative physiological studies on tissue and organism responses
title_fullStr Intra-specific variation of ocean acidification effects in marine mussels and oysters: integrative physiological studies on tissue and organism responses
title_full_unstemmed Intra-specific variation of ocean acidification effects in marine mussels and oysters: integrative physiological studies on tissue and organism responses
title_sort intra-specific variation of ocean acidification effects in marine mussels and oysters: integrative physiological studies on tissue and organism responses
publisher Universität Bremen
publishDate 2019
url https://media.suub.uni-bremen.de/handle/elib/4556
https://doi.org/10.26092/elib/353
https://nbn-resolving.org/urn:nbn:de:gbv:46-elib45565
genre Ocean acidification
genre_facet Ocean acidification
op_relation https://media.suub.uni-bremen.de/handle/elib/4556
http://dx.doi.org/10.26092/elib/353
doi:10.26092/elib/353
urn:nbn:de:gbv:46-elib45565
op_rights info:eu-repo/semantics/openAccess
Bitte wählen Sie eine Lizenz aus: (Unsere Empfehlung: CC-BY)
op_rightsnorm CC-BY
op_doi https://doi.org/10.26092/elib/353
_version_ 1766157272873959424