Identification and statistical analysis of global water vapour trends based on satellite data

Global water vapour total column amounts have been retrieved from spectral data provided by the Global Ozone Monitoring Experiment (GOME) flying on ERS-2, which was launched in April 1995, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard ENVISAT launc...

Full description

Bibliographic Details
Main Author: Mieruch, Sebastian
Other Authors: Burrows, John, Freund, Jan
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universität Bremen 2009
Subjects:
530
Online Access:https://media.suub.uni-bremen.de/handle/elib/2712
https://nbn-resolving.org/urn:nbn:de:gbv:46-diss000115889
Description
Summary:Global water vapour total column amounts have been retrieved from spectral data provided by the Global Ozone Monitoring Experiment (GOME) flying on ERS-2, which was launched in April 1995, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard ENVISAT launched in March 2002. For this purpose the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS) approach has been used. The combination of the data from both instruments provides a long-term global data set spanning more than 12 years with the potential of extension up to 2020 by GOME-2 data on MetOp. Using linear and non-linear methods from time series analysis and standard statistics the trends of water vapour columns and their errors have been calculated. In this study, factors affecting the trend such as the length of the time series, the variance of the noise and the autocorrelation of the noise are investigated. Special emphasis has been placed on the calculation of the statistical significance of the observed trends, which reveal significant local changes from -5 % per year to 5 % per year. These significant trends are distributed over the whole globe. Increasing trends have been calculated for Greenland, East Europe, Siberia and Oceania, whereas decreasing trends have been observed for the northwest USA, Central America, Amazonia, Central Africa and the Arabian Peninsular. The idea of the comprehensive trend and significance analysis is to get evidence for the truth of these observed changes. While the significance estimation is based on intrinsic properties such as the length of the data sets, the noise and the autocorrelation, an important aspect of assessing the probability that the real trends have been observed is a validation with independent data. Therefore an intercomparison of the global total column water vapour trends retrieved from GOME and SCIAMACHY with independent water vapour trends measured by radiosonde stations provided by the Deutsche Wetter Dienst DWD (German Weather ...