The relevance of aerosol in the retrieval of tropospheric NO2 from satellite - a study of model data applicability

Nitrogen dioxide (NO2) is a key pollutant in the troposphere, being one of the main precursors of tropospheric ozone, and source of nitric acid, as well as contributing to global climate change. Tropospheric NO2 vertical columns can be determined from satellite observations, although some uncertaint...

Full description

Bibliographic Details
Main Author: Leitão Alexandre, Joana
Other Authors: Burrows, John P., Schrems, Otto
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universität Bremen 2011
Subjects:
550
Online Access:https://media.suub.uni-bremen.de/handle/elib/248
https://nbn-resolving.org/urn:nbn:de:gbv:46-00102425-15
Description
Summary:Nitrogen dioxide (NO2) is a key pollutant in the troposphere, being one of the main precursors of tropospheric ozone, and source of nitric acid, as well as contributing to global climate change. Tropospheric NO2 vertical columns can be determined from satellite observations, although some uncertainties are still associated with the retrieval process. The conversion from measured slant columns to vertical columns is accomplished with airmass factors (AMF) that are determined by radiative transfer (RT) models. While the measurement (instrumental) conditions are well assessed, improvement is still needed regarding the a priori information of atmospheric characteristics required for the estimation of AMFs (e.g., vertical distribution of the gas, aerosol loading and clouds). This thesis presents a sensitivity study focused on the impact of aerosol on the tropospheric NO2 AMF. Optical properties, size distribution, and vertical distribution of the aerosol were varied within several scenarios. Overall, the results show a tendency for two main opposite effects. On the one hand, enhancement of the measurement sensitivity occurs by means of multiple scattering, when aerosol is mixed with the trace gas. On the other hand, a shielding effect by an aerosol layer located above the NO2 is also verified. The identified pivotal factors for the AMF calculations were the relative vertical distribution of aerosol and NO2, the aerosol optical depth and the single scattering albedo, as well as the surface reflectance. A case study was developed, focusing on the impact on the NO2 measurements of volcanic ash emitted from Eyjafjallajökull during the spring of 2010. Aerosol and NO2 data from the EURAD chemical transport model (CTM) were used to design scenarios for the RT calculations. A small variation of AMFs was found, revealing that, in the days and region analysed, the satellite observations of NO2 were not significantly affected by the mentioned eruption. Nonetheless, it was verified that the conclusions of the study are dependent ...