Palaeogenomic reconstruction of woolly mammoth evolutionary history and extinction dynamics

Biodiversity is declining globally. Yet, the biological and genetic processes associated with these declines on a longer timescale are still poorly understood. Ancient DNA is a powerful tool to study evolution in real-time. Despite advances in the field, there is further need for refinement of labor...

Full description

Bibliographic Details
Main Author: Dehasque, Marianne
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Stockholms universitet, Zoologiska institutionen 2023
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-214156
Description
Summary:Biodiversity is declining globally. Yet, the biological and genetic processes associated with these declines on a longer timescale are still poorly understood. Ancient DNA is a powerful tool to study evolution in real-time. Despite advances in the field, there is further need for refinement of laboratory and computational techniques. In this thesis, I used mitochondrial and nuclear genomes, as well as radiocarbon data, to study the evolutionary history and extinction dynamics of the woolly mammoth (Mammuthus primigenius). In Chapter I, I developed and optimized a silica column-based extraction protocol for ancient DNA. Based on systematic tests, I advise against routine use of pretreatment methods, like bleach wash and/or predigestion, for well-preserved permafrost samples. Furthermore, I suggest that USER enzyme, which removes uracil from damaged DNA molecules, is effective at half the concentration compared to an established control protocol. Finally, I did not find a significant difference between different silica columns for the clean-up steps, or concentrator columns with different DNA retention sizes. In Chapter II, I used five high coverage Siberian mammoth genomes to develop a method based on differences in read depth to identify indels, insertions and deletions, in the mammoth genome. The results show that indels are enriched in intergenic regions, suggesting strong selection against structural variants affecting gene function. Nevertheless, 87 genes were identified that were severely affected. These genes are related to various functions like body-fat distribution, fur growth and hair shape, body temperature, and body size, and most likely represent important adaptations to the cold steppe-tundra. In Chapter III, I studied the population and extinction dynamics of the woolly mammoths in Siberia by combining Bayesian age models from radiocarbon data with inferences from complete mitogenomes. The results show that the woolly mammoth’s extinction was a complex process with consecutive extirpations, but ...